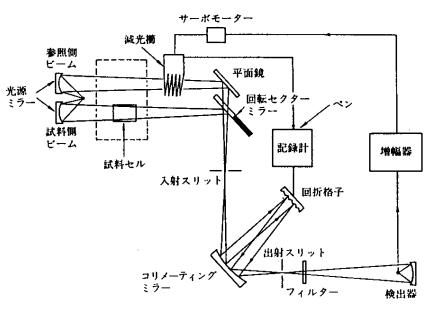
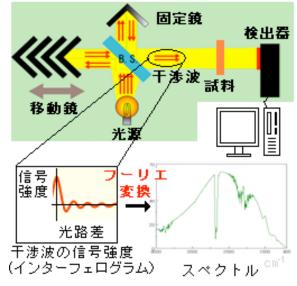

赤外分光法の基本原理:振動のポテンシャルエネルギー

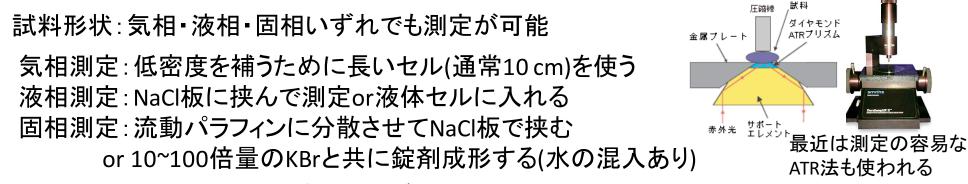

二原子分子の振動をばねで近似

有機分析化学特論+有機化学4 第2回(2015/04/17)

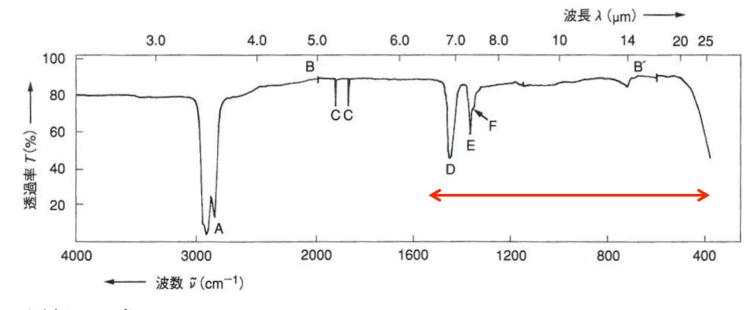


分光計のしくみ:分散型とフーリエ変換型

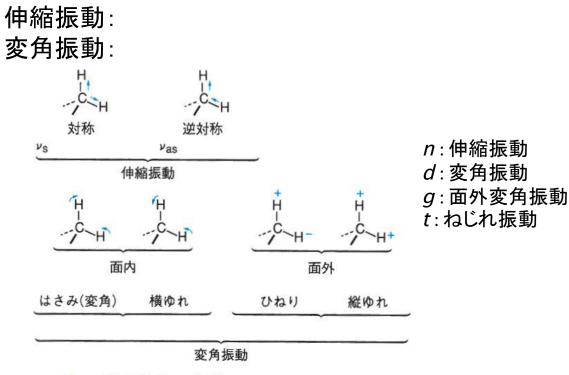
分散型:サンプルに白色光を当てて 出てきた光を回折格子で波長ごとに分けて 検出器で検出する方式



フーリエ変換型:干渉波を試料に導入し、 観測した光をフーリエ変換で各波数に分離する方式


JASCO社ウェブサイトより http://www.jasco.co.jp/jpn/technique/internet-seminar/ftir/ftir2.html **2**

試料調製とスペクトルの表示形式


島津製作所ウェブサイトより http://www.an.shimadzu.co.jp/apl/topics/200812/ibutsu.htm

スペクトル表示形式(例:パラフィン(長鎖炭化水素)のIRスペクトル)

縦軸:通常は 横軸:波数と波長の両方が示されることが多い 通常は

振動の分類と特性吸収の一般傾向

+ = 紙面の前側への振動 - = 紙面の後側への振動

水素との単結合の特性吸収の傾向 =

$\tilde{\nu}$ (C – X) (cm ⁻¹)	Xの原子質量
≈ 3000	I
≈ 2100	2
\approx 1000	12
\approx 700	35
	≈ 3000 ≈ 2100 ≈ 1000

2節参照.波数 ジと振動数はたがいに比例.

多重結合の特性吸収の傾向 =

 $\tilde{\nu}(C \equiv C) \approx 2200 \text{ cm}^{-1}$ $\tilde{\nu}(C = C) \approx 1640 \text{ cm}^{-1}$ $\tilde{\nu}(C - C) \approx 1000 \text{ cm}^{-1}$

官能基ごとの特性吸収①: C-H, O-H, N-H

C-H吸収の特徴

- •対称禁制のものがある
- ・多くの吸収はほとんど同じ波数=
- •アルカン型C-Hは3000 cm⁻¹以下に強い吸収
- ▪sp²炭素--Hは3000 cm⁻¹以上に弱い吸収

O-H, N-H吸収の特徴

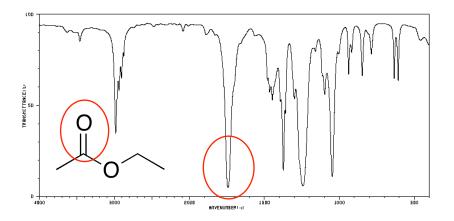
水素結合の有無により波数や線幅が変わる
 →

•N-H吸収はO-H吸収よりも少し弱く低振動数側

官能基ごとの特性吸収②:多重結合

C=CおよびX=Y=Z型吸収の特徴

・他の吸収と重なりにくいため同定は容易
 ・X=Y=Zは二重結合にしては高振動数にある
 →


C=O, C=N, C=C, N=N, N=O型吸収の特徴

・他の吸収と重なりにくいため同定は容易
 ・ケトンが1715 cm⁻¹付近にあり、
 カルボニルに結合した原子によりシフトする

・カルボン酸では

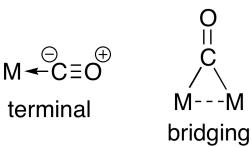
•a,b-不飽和化合物では

・ニトロ基は

官能基ごとの特性吸収③:カルボニル錯体・ヒドリド錯体

カルボニル錯体におけるC=O吸収の特徴

Terminal型の特徴


- ・他の吸収と重なりにくいため同定は容易
- 一般には2125~1850 cm⁻¹に現れる
 (金属に配位していないCOは2143 cm⁻¹)
- ・金属からの
 - 金属上の電子密度上昇→
- 金属上に正電荷→
- ・カルボニル配位子が複数あると

Bridging型の特徴

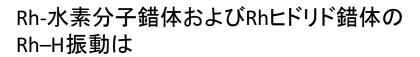
- ・他の吸収と重なりにくいため同定は容易
- ・一般には1850~1700 cm⁻¹に現れる
- 金属の数が増えるとさらに低振動数側へ

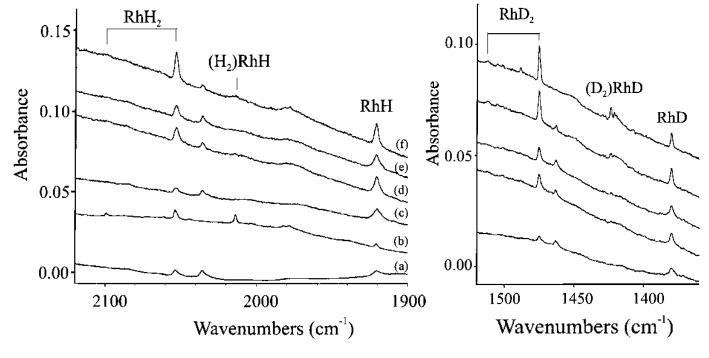
ヒドリド錯体におけるM-H吸収の特徴

- •terminal型は2200-1600 cm⁻¹に
 - bridging型は1600-800 cm⁻¹現れる(吸収は弱め)

同位体ラベル法

→重い同位体を使って化合物の特定の箇所をラベルすると

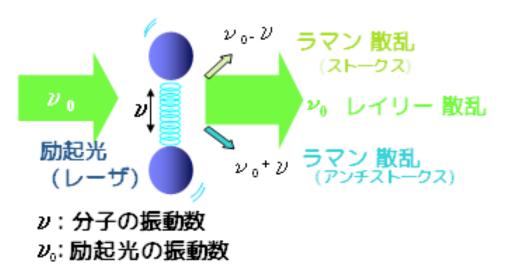

原子質量が大きくなると低振動数側へ


調和振動子の振動数

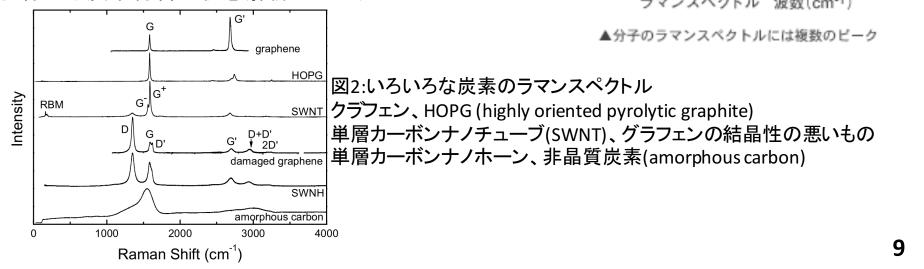
$$v = \frac{1}{2\pi} \sqrt{\frac{k}{\mu}}$$

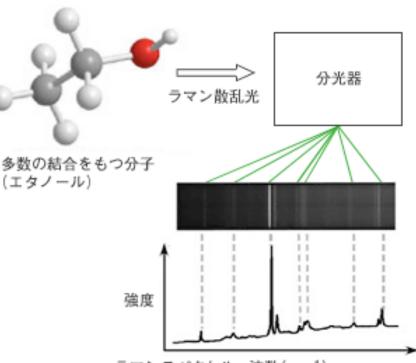
例:レーザー励起されたRh原子の水素化

 \rightarrow

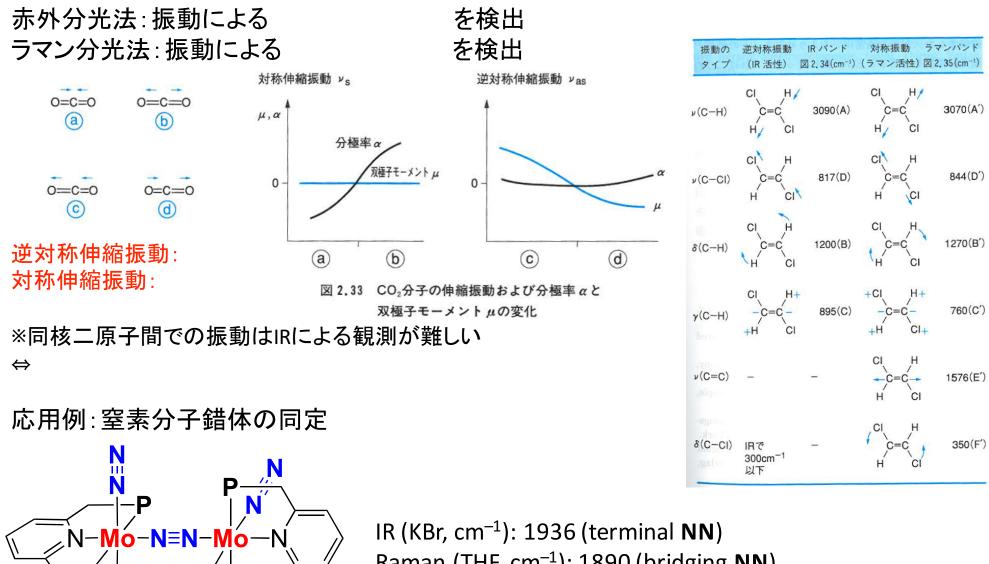


J. Phys. Chem. A 2002, 106, 3706.


ラマン分光法:原理


レーザーをサンプルに当てる→

http://www.jasco.co.jp/jpn/technique/internet-seminar/raman/raman1.html


例:様々な炭素材料の状態解析への応用

ラマンスペクトル 波数(cm-1)

選択則:赤外分光法とラマン分光法

N

Ν

Ρ

D

Ν

īΰ

Ν

Raman (THF, cm⁻¹): 1890 (bridging **NN**) *cf.* N₂ (gas): 2331 cm⁻¹

K. Arashiba (石井研卒業生), Y. Miyake, Y. Nishibayashi Nature Chem. 2011, 3, 120.