多核NMR①: 測定しやすい核としにくい核

多核NMR:

有機分析化学特論+有機化学4 第8回(2015/06/05)

(核の種類による)検出感度(同じ濃度の時)

ν₀: 共鳴周波数

N: 核スピン濃度

線幅因子 (line width factor)

補講@6210号室

$$LW = \frac{(2I+3)Q^2}{P(2I-1)}$$
 $I:$ 核スピン [6/19(金)休講] $Q:$ 核四極子モーメント

相対感度(13C核を基準)

$$R' = \left[\frac{I(I+1)}{\frac{1}{2}(\frac{1}{2}+1)} \right] \times \left[\frac{v_0}{v_{13C}} \right]^3$$

総合相対感度

(天然存在比も考慮して¹³C核を基準)

$$R' = \left[\frac{I(I+1)}{\frac{1}{2}(\frac{1}{2}+1)} \right] \times \left[\frac{v_0}{v_{13C}} \right]^3 \times \left[\frac{\alpha_0}{\alpha_{13C}} \right]$$

よく利用される/=1/2の核

¹⁵N (0.37%), ¹⁹F (100%), ²⁹Si (4.7%), ³¹P (100%) ⁷⁷Se (7.58%), ¹¹¹Cd (12.75%), ¹¹⁹Sn (8.58%) ¹²⁵Te (6.99%), ¹⁹⁵Pt (33.8%), ²⁰⁷Pb (22.6%)

よく利用されるI=1/2以外の核

²H (
$$I = 1, 0.015\%$$
), ⁷Li ($I = 3/2, 92.6\%$)
¹¹B ($I = 3/2, 81.2\%$), ¹⁴N ($I = 1, 99.6\%$)
¹⁷O ($I = 5/2, 0.037\%$)

他の核とのカップリングがよく利用される核

¹⁰³Rh (
$$I = -1/2$$
, 100%)
¹⁰⁷Ag ($I = -1/2$, 51.82%), ¹⁰⁹Ag ($I = -1/2$, 48.18%)

三共出版「多核種の溶液および固体NMR」

北川進,水野元博,前川雅彦 著、竹内敬人・西川 実希 訳

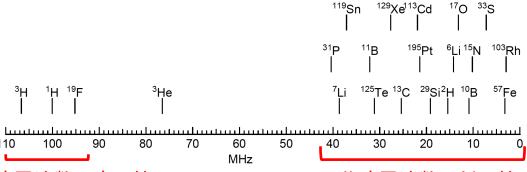
ISBN: 9784782705681

多核NMR②: それぞれの核の共鳴周波数と化学シフト

共鳴周波数は核ごとに決まっている

化学シフト幅は核ごとに異なる

電磁波のエネルギー
$$\Delta E = hv$$
とすると
$$v = \frac{\gamma \cdot \mathbf{B_0}}{2\pi}$$


型に行うオートチューニングは この共鳴周波数を調整する作業

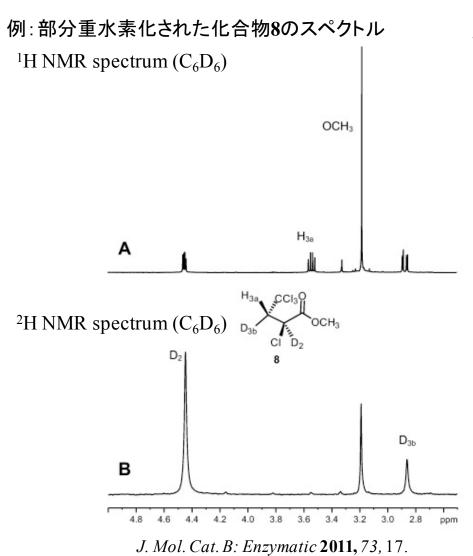
それぞれの核における共鳴周波数(1Hを100 MHzとしたとき)

http://www.chem.wisc.edu/areas/reich/nmr/notes-7-multi.pdf

1H = 100 MHz

通常は高周波数の核を¹Hに固定して測定 低周波数側をいろいろ設定することが多い (=¹⁹F測定の後はチューニングを¹Hに戻す)

共鳴周波数の高い核 = high frequency核 共鳴周波数の低い核 = low frequency核


$$^{1}\text{H} \sim 15 \text{ ppm}$$

 $^{13}\text{C} \sim 200 \text{ ppm}$

$$^{11}\text{B} \sim 210 \text{ ppm}$$

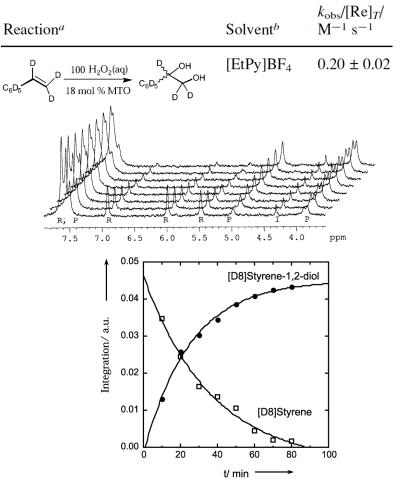
 $^{31}\text{P} \sim 450 \text{ ppm}$
 $^{77}\text{Se} \sim 3000 \text{ ppm}$
 $^{195}\text{Pt} \sim 6700 \text{ ppm}$
 $^{59}\text{Co} \sim 18000 \text{ ppm}$

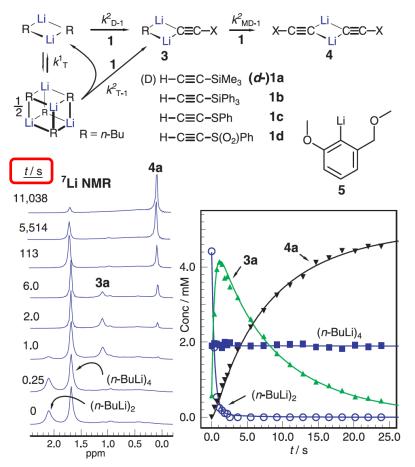
多核NMR各論: 2H NMRスペクトル

 2 H, 核スピンI = 1, 天然存在比0.015%, 磁気回転比 γ = 4.1066 四極子モーメント = 2.8×10^{-3} , 相対総合感度 = 1.45×10^{-6}

化学シフト基準はSi(CD₃)₄=0

応用例: styrene-d₈のMeReO₃を用いた 触媒的ジヒドロキシ化反応速度測定




Fig. 1 [D₈]Styrene dihydroxylation, 0.5 M H_2O_2 . *Chem. Commun.* **2002**, 66.

多核NMR各論: 7Li, 6Li NMRスペクトル

 7 Li, 核スピンI = 3/2, 天然存在比92.6%, 磁気回転比 $\gamma = 10.396$ 四極子モーメント = -4×10^{-2} , 相対総合感度 = 1.54×10^{3}

 6 Li, 核スピンI = 1, 天然存在比7.4%, 磁気回転比 $\gamma = 3.937$ 四極子モーメント = -8×10^{-4} , 相対総合感度 = 3.58

⁷Li応用例: Me₃Siアセチレンの脱プロトン化をRI(rapid injection)NMR法で迅速モニター

J. Am. Chem. Soc. 2007, 129, 3492.

化学シフト基準は $LiCl/D_2O = 0$ 範囲は約 $-10\sim5$ ppm

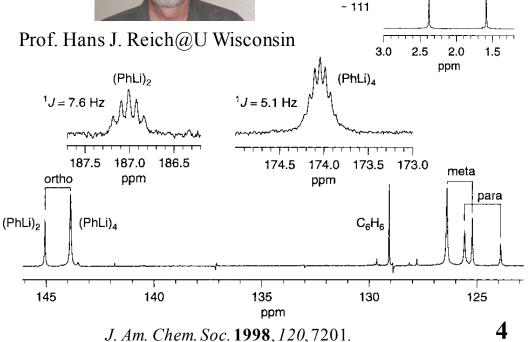
Temp / ° C

- 67

- 84

- 90

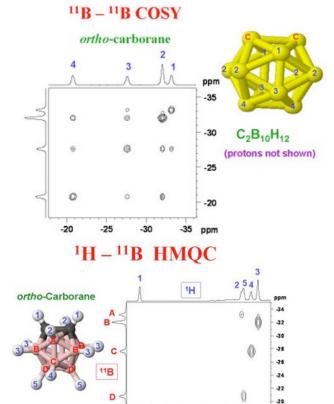
- 95


(PhLi)₄

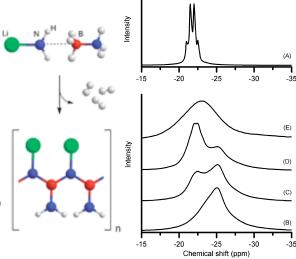
⁶Li

(PhLi)₂

⁶Li応用例: (Ph⁶Li)₂と(Ph⁶Li)₄の 平衡をEt₂O溶媒中低温の⁶Liおよび ¹³C NMRスペクトルで観測



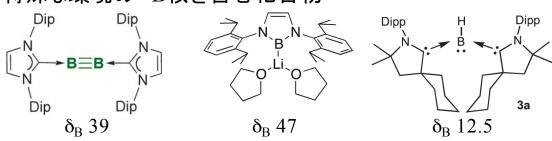
多核NMR各論:11B NMRスペクトル


¹¹B, 核スピンI= 3/2, 天然存在比80.42%, 磁気回転比γ=8.5847 四極子モーメント = 4.1×10^{-2} , 相対総合感度 = 7.52×10^{2}

例: BBr₃: 38.5 ppm, BBr₃·pyridine: -7.1 ppm 他の核とのカップリングは3配位>4配位

ホウ素クラスターでは二次元11B NMRが有用

化学シフト基準はBF₃·OEt₂=0 範囲は約-120~90 ppm


Energy Environ. Sci. 2009, 2, 706.

特殊な環境の¹¹B核を含む化合物

反応を追跡

固体¹¹B NMRで

水素吸蔵合金の

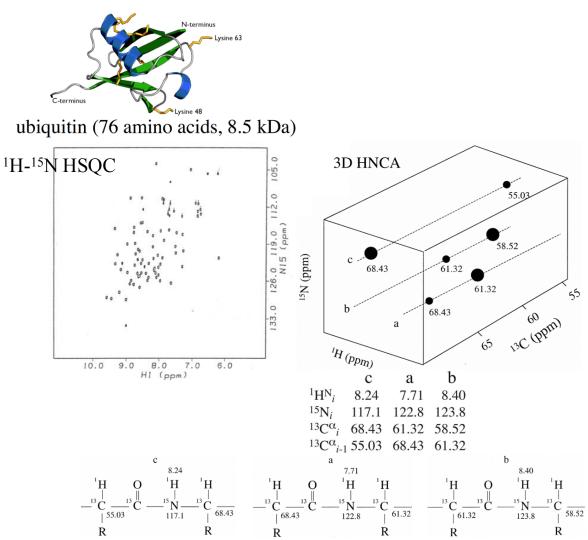
Science 2006, 314, 113. Science 2012, 336, 1420.

Science 2011, 333, 610. PCy_3 PhS—Pt—B≡O PC_{V3} . Dur $\delta_{\rm B} 17$ $\delta_{\rm B} 130$

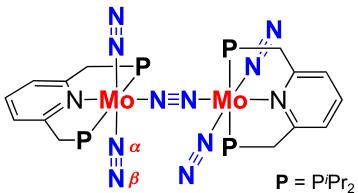
Science 2010, 328, 345.

Nat. Chem. **2013,** *5*, 115.

5


http://u-of-o-nmr-facility.blogspot.jp/2008/04/11-b-cosy.html http://u-of-o-nmr-facility.blogspot.jp/2008/04/1-h-11-b-hmqc.html

3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 ppm


多核NMR各論: 15N NMRスペクトル

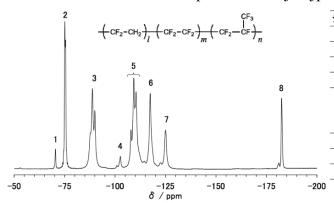
 15 N, 核スピンI=-1/2, 天然存在比0.37%, 磁気回転比 $\gamma=-2.716$ 四極子モーメント=なし, 相対総合感度 = 2.19×10^{-2}

化学シフト基準はCH₃NO₂ = 0 範囲は約-600~600 ppm

最近の応用例:窒素分子錯体の同定

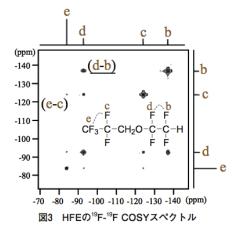
 $\delta_{\rm N}$ -29.0 (dt, ${}^{1}J_{\rm NN}$ & ${}^{2}J_{\rm PN}$ = 6.1&2.4 Hz, terminal N α) $\delta_{\rm N}$ -16.5 (d, ${}^{1}J_{\rm NN}$ = 6.1 Hz, terminal N β) $\delta_{\rm N}$ 8.5 (s, bridging N)

Nat. Chem. **2011**, *3*, 120.

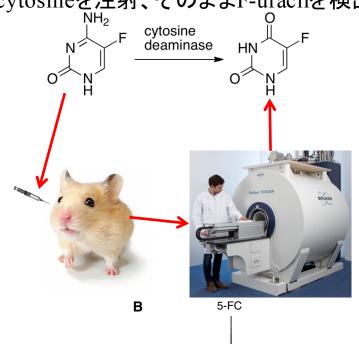

多核NMR各論: 19F NMRスペクトル

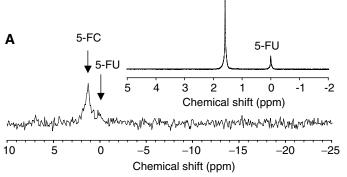
 19 N, 核スピンI=1/2, 天然存在比100%, 磁気回転比 $\gamma=25.1815$ 四極子モーメント=なし, 相対総合感度 = 4.73×10^3

化学シフト基準はCFCl₃ = 0 範囲は約-300~900 ppm


使用例:含フッ素ポリマーの構造解析

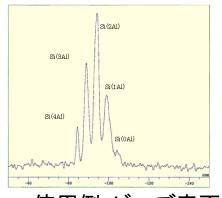
http://www.cerij.or.jp/


シグナル	帰属結果
1	-CH ₂ -CF ₂ -CF(CF ₃)-CF ₂ -CH ₂ -
2	-CF ₂ -CF ₂ -CF(CF ₃)-CH ₂ -CF ₂ -
3	-CF ₂ -CH ₂ -CF ₂ -CH ₂ -CF ₂ -
4	-CF ₂ -CH ₂ -CF ₂ -CF(CF ₃)-CF ₂ -
	-CF ₂ -CH ₂ -CF ₂ -CF ₂ -CF(CF ₃)-
5	-CF ₂ -CH ₂ -CF ₂ -CF ₂ -CH ₂ -
	-CH ₂ -CF ₂ -CH ₂ -CH ₂ -
6	-CH ₂ -CF ₂ -CF ₂ -CF(CF ₃)-CH ₂ -
7	$-CF_2 - CF(CF_3) - CF_2 - CF_2 - CF(CF_3) -$
8	-CF ₂ -CF ₂ -CF(CF ₃)-CH ₂ -CF ₂ -


二次元¹⁹F NMR:

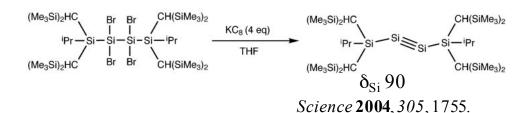
http://www.toray-research.co.jp/new_bunseki/index.html

最近の応用例: ネズミの腫瘍に F-cytosineを注射、そのままF-uracilを検出

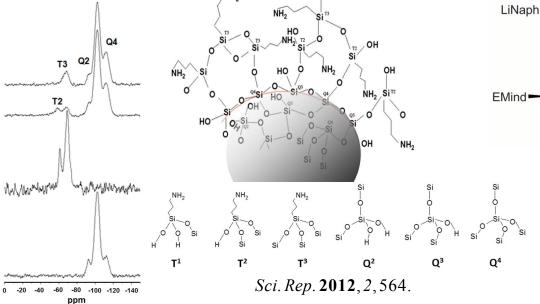

Brit. J. Cancer 2004, 89, 1796.

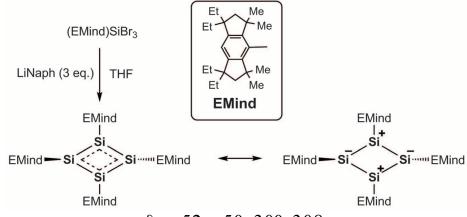
多核NMR各論: 29Si NMRスペクトル

 29 Si, 核スピンI = -1/2, 天然存在比4.7%, 磁気回転比 $\gamma = -5.3190$ 四極子モーメント = なし, 相対総合感度 = 4.95×10^{-1}


化学シフト基準はSiMe₄=0 範囲は約-200~100 ppm

使用例: 固体²⁹Si NMRによる Al,Si含有ゼオライトの分析

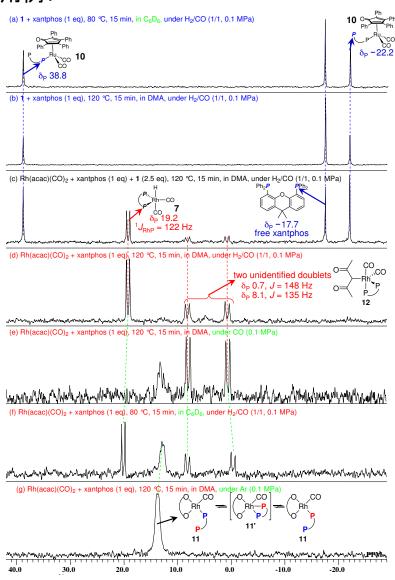



http://www.ube-ind.co.jp/usal/documents/o224 145.htm

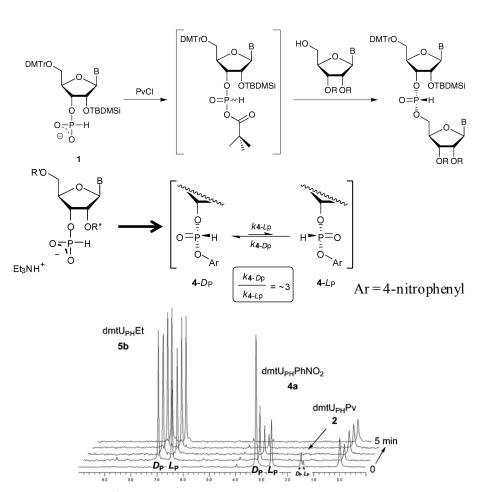
最近の例:特殊な環境の29Si核を含む化合物

使用例:ビーズ表面に形成した シロキサンの状態分析

 $\delta_{Si}\!-\!52, -50, 300, 308$


Science 2011, 331, 1306.

多核NMR各論: 31P NMRスペクトル


 31 P, 核スピンI=1/2, 天然存在比100%, 磁気回転比 $\gamma=10.8394$ 四極子モーメント=なし, 相対総合感度 = 1.44×10^2

化学シフト基準は85%H₃PO₄=0 範囲は約-400~600 ppm

利用例:

Angew. Chem. Int. Ed. 2010, 49, 4488.

Fig. 4 31 P NMR traces for the time course of transesterification of *p*-nitrophenyl uridine *H*-phosphonate **4a** with EtOH (5 equiv.). Note the immediate consumption of L_P -**4a** in the first minute of the reaction.

New J. Chem. 2010, 34, 854.