X線結晶構造解析=電子密度が高い場所を見つける

X線結晶構造解析から直接わかるのは電子密度の高い場所 有機分析化学特論+有機化学4 =

結合パラメータ(距離・角度・ねじれ角)

分子の3次元構造を示すためのパラメータは3種のみ

(xyz座標でも良いが、わかりにくいので原子間の距離・角度・ねじれ角を考える)

結合距離

通常の有機化合物では原子間距離が

結合角

sp³ 109.5°, sp² 120°, sp 180° など

Net Contraction	長 3-2 共有	結合半径()	Å)
Н	0.37	S	1.04
С	0.77	F	0.72
N	0.74	C1	0.99
0	0.74	Br	1.14
Р	1.10	I	1.33

同周期では

共有結合半径やイオン半径 その他の原子の性質に関わる 物性値が集められた本 Emsley, J., *The Elements*. 3rd ed. Oxford University Press: New York, 1998. ISBN: 9780198558187

その他、典型的な結合距離 C--C 1.54 Å, C=C 1.33 Å C--O 1,43 Å, C=O 1,20 Å など 教科書p34に大きな表あり ねじれ角と二面角

二面角=180°-ねじれ角

分子構造と対称性

ベンゼンの15Kにおける結晶解析結果

Orthorhombic, 空間群*Pbca*, *a* = 7.360 Å, *b* = 9.375 Å, *c* = 6.703 Å 空間群*Pbca/こおける対称操作* 空間群*Pbca/こおける等価位置*

分子の平面性の評価

結合角の和で判定:sp²混成の原子の平面性

4個以上の原子からなる環構造の平面性:

Σd²が最小になる平面pを計算し、 pから各原子までの距離を数値で表す

例:7-アミノ-3-フェニルクマリン

Tableより赤で示された原子が 平面から比較的多くずれている

立体歪みのある分子構造

立体歪みのある分子は構造全体で歪みを少しずつ吸収する

例:7,12-dimethylbenz[a]anthracene

例:hexahelicene

(A)

0

B

ステレオ図を見て、どのねじれ角で歪みを吸収しているかを考えよ

結晶中での分子間相互作用

判定基準: van der Waals半径の和

表 5-1 種々の原子の van der Waals 半径(Å)

Pauling¹⁾による値と Bondi²⁾による値(カッコ内)を示した.

Bondi はさらに、芳香環のHに1.00Å、ベンゼン環に垂直方向のCに1.77Åを 提案している.

Η	1.2	(1.20)	N	1.5	(1.55)	0	1.4	(1.52)	С	(1.70)
F	1.35	(1.47)	P	1.9	(1.80)	S	1.85	(1.80)	Si	(2.10)
C1	1.8	(1.75)	As	2.0	(1.85)	Se	2.0	(1.90)		
Br	1.95	(1.85)	Sb	2.2	(2.10)	Te	2.2	(2.06)		
Ι	2.15	(1.98)	(メチ)	ル基の	半径 2.0〕	〔芳香環	の厚みの	1/21.70)		

1) L. Pauling, "The Chemical Bond", Cornell University (1967).

2) A. Bondi, J. Phys. Chem., 68, 441 (1964).

弱い分子間相互作用の例:水素結合

J. Mol. Struct. 2012, 1008, 88.

X線結晶構造解析では水素原子の位置を 完全に決定できることはまれ

=

=

van der Waals半径は共有結合半径に比べて大きく 比較的遠くにあると思われる原子同士でも 相互作用していることが多い

結	合	平均 (Å)	範囲 (Å)
N-H…N		3.10	2.88~3.38
N-H···O			
アンモニア		2.88	2.68~3.24
アミド		2.93	2.55~3.04
アミン		3.04	2.57~3.22
N-H-F		2.78	2.62~3.01
N-H····Cl		3.21	2.91~3.52
N-H…Br		3.37	3.28~3.44
O-H···N		2.80	2.62~2.93
O-H···O			
オキシム, 無機	酸	2.58	2.44~2.84
カルボン酸		2.63	2.45~2.75
有機・無機物両	方に含まれる水	2.71	2.49~3.07
アルコール		2.74	2.55~2.96
無機物に含まれ	る水	2.75	2.49~3.15
有機物に含まれ	る水	2.80	2.65~2.93
水酸化物		2.82	2.36~3.36
O-H…Cl		3.07	2.86~3.21
0—H····Br		3.30	3.17~3.38

表 5-3 N-H…X および O-H…X 水素結合の距離(N(0)…X)とその 範囲

データの正しさ

結晶解析の正しさ(R因子・重み付けR因子・goodness of fit)

h:hklの整数の組をベクトルで表現している

*F*₀: 実測の結晶構造因子

F_c:現在求めた構造の結晶構造因子

実測値と理論値の差を取っているので 理想的には0に近づいていくはず 実際は0.1を切ると確からしい構造であると言える

 $R = \frac{\sum ||F_0(\boldsymbol{h})| - |F_c(\boldsymbol{h})||}{\sum |F_0(\boldsymbol{h})|}$

 $Rw = \left(\frac{\sum w(h)(|F_{o}(h)| - |F_{c}(h)|)^{2}}{\sum w(h)|F_{o}(h)|^{2}}\right)^{1/2} \quad w(h) = 1/\sigma^{2}(F_{o}(h)): 各測定データの重み係数 \\ \sigma: データの分散$

こちらはR因子に測定データごとの重みをつけたもの

$S = \frac{\sum (F_{o}(\boldsymbol{h}) - F_{c}(\boldsymbol{h})) / \sigma(\boldsymbol{h})}{ F_{o}(\boldsymbol{h}) }$	<i>♂</i> (h) : データの分散 a:E.計の数
n-m	m: 精密化に使った変数の数
S (goodness of fit: GOF)の値が1に近ければ	ť
求めた分子構造は正しいと言える	

結合距離・角度・ねじれ角の正しさ

原子位置の標準偏差→距離・角度・ねじれ角の標準偏差

例: 95%²以上の確率でこの範囲に真の値がある C1-C2 1.513(4) Å 1.513±0.004×1.96=1.505~1.521 Å C2-C3 1.505(4) Å 1.505±0.004×1.96=1.497~1.513 Å C3-C4 1.545(4) Å 1.545±0.004×1.96=1.537~1.553 Å

表 6-1 正規分布

xという量がその平均値から+, -どちらかの方向に $q\sigma$ 以上離れて存 在する確率をpとする.

Þ	q	Þ	q
1.00	0.000	0.30	1.04
0.90	0.126	0.20	1.28
0.80	0.253	0.10	1.65
0.70	0.385	0.05	1.96
0.60	0.524	0.01	2.58
0.50	0.674	0.001	3.29
0.40	0.842	0.0001	3.89

原子の運動性:温度因子とORTEP図

向きだけが異なる分子は乱れた構造をとる: ディスオーダー

X線結晶構造解析では原子の動きを捉えられない

動いている原子核はつながって見えてくる
(b) 各原子が占める位置が2つあり おのおのが50%を占める場合
=静的乱れ(static disorder)
(c) 2つの位置間での活性化エネルギーが 十分に低く、平衡状態にある場合
=動的乱れ(dynamic disorder)
(d) (b)(c)の混在

よくディスオーダーする置換基

^tBu基: 'Bu-C結合の回転で60° ずれた形とディスオーダー CF₃基: F₃C-C結合の回転で60° ずれた形とディスオーダー まれに3種類がディスオーダー

長鎖アルキル基:アルキル鎖の折れ曲がりがディスオーダー 他に結晶溶媒として含まれるTHF・トルエン・CHCl₃なども

Acta Cryst. E 2011, 67, o722.

結晶解析と絶対構造

原子散乱因子における異常分散項 $f=f_0+\Delta f'+i\Delta f''$

f₀:異常分散が無い場合の原子散乱因子 Δf', Δf", 異常分散項(原子の種類により変わる)

表 8-1 CuKa線に対する異状分散項

原子	fo	$\Delta f'$	$\Delta f''$
С	6	0.017	0.009
N	7	0.029	0.018
0	8	0.047	0.032
F	9	0.069	0.052
Na	11	0.129	0.124
Si	14	0.244	0.330
P	15	0.283	0.434
S	16	0.319	0.557
C1	17	0.348	0.702
Cr	24	-0.198	2.443
Co	27	-2.464	3.608
Ni	28	-2.956	0.509
Br	35	-0.767	1.283

異常分散が存在しない場合は *I (h k l) − I (−h −k −l)* = 0 となる 異常分散が存在すると次式が正の値となる *I(hkl)−I(−h −k −l)*

 $= -4(f_{o} + \Delta f')C \cdot \Delta f''S + 4\Delta f''C \cdot (f_{o} + \Delta f')S$

ー般には第3周期以降の元素が入っていないと 上記の値はかなり0に近い値となってしまう

ここで現在取り扱っている結晶が双晶であると仮定して 解析中に見ている構造と絶対立体配置が反転した構造で それぞれの結晶構造因子F(h k l)とF(-h -k -l)の 二乗の差を取ると反射強度を求めることができる I(h k l) = (1-x) |F (h k l)|² + x |F (-h - k -l)|²

xが0になり、その標準偏差oが十分に小さければ 現在見ている構造の絶対立体配置は正しい xのことをFlack parameterと呼ぶ

結晶構造解析装置の概要

X線が入射する結晶は*φ, χ, ω*の3軸で回転 検出器は20で回転するため4つの軸が存在する

結晶の回転軸を有すると共に 頂点部位に結晶の中心と回転軸を合わせる

デメリット

散乱X線の検出器

現在の主流はIP (imaging plate)とCCD (charged coupled device) 最近ハイブリッドピクセル検出器も開発された

