有機金属化学の基礎(第1回)

- 周期表
- 形式酸化数、価電子数
- ・ 配位子と結合様式
- 18電子則
- 配位子場理論
- Jahn-Teller 歪み
- 錯体の幾何構造

有機金属錯体

有機金属錯体 : 金属一炭素結合を有する化合物

有機遷移金属錯体 organotransition meal complex 遷移金属一炭素結合 主要族元素 (main-group element) アルキルリチウム、Grignard 反応剤

有機金属化合物

- 1760 [(CH₃),As],O 初の有機金属錯体 (Cadet)
- 1827 Na[PtCl₃(C₂H₄)] Zeise 塩 最初のオレフィン錯体
- 1849 ZnEt, 不安定化合物の合成(水素雰囲気下実験) (Frankland)
- 1868 [Pt(CO)Cl₂]₂初のカルボニル錯体の合成 (M. P. Schutzenberger)
- 1899 マグネシウム反応剤(Mg + CH₃I)の発見 (P. Barbier)
- 1909 (CH₃)₃PtI 初の遷移金属アルキル錯体の合成 (W. J. Pope)
- 1917 LiCH₃ トランスメタル化によるアルキルリチウムの合成 (W. Schlenk)
- 1931 Fe(CO)₄H 初の遷移金属ヒドリド錯体 (W. Hieber)
- 1951 アルケン錯体の結合理論 (M. J. S. Dewar, J. Chatt, L. A. Duncanson)
- 1951 Cp₂Fe フェロセンの合成 (P. Pauson, S. A. Miller)
- 1953 LiCu(CH₃)₂ 有機銅錯体 (organocuprate) の合成 (H. Gilman)

- 1955 オレフィン重合触媒 (K. Ziegler, G. Natta) Nobel Prize 1963
- 1956 ヒドロホウ素化 (H. C. Brown) Nobel Prize 1963
- 1959 π-アリルパラジウム錯体 [(η³-C₃H₅)PdCl]₂ (J. Smidt, W. Hafner)
- 1961 Vitamin B₁₂の結晶解析 (D. Crwofood Hodgkins) Nobel Prize 1964
- 1964 初のカルベン錯体 (CO)₅W=C(OMe)Me (E. O. Fischer) Nobel Prize 1973
- 1965 均一系水素化触媒 RhCl(PPh₃)₃ (G. Wilkinson, R. S. Coffey) Nobel Prize 1973
- 1965 パラジウム触媒による炭素-炭素結合カップリング (J. Tsuji)
- 1969 Pt触媒によるC-H結合活性化の先駆的研究 (A. E. Shilov)
- 1981 Si=Si結合 (Mes)₂Si=Si(Mes)₂ (R. West)
- 1982 遷移金属錯体によるアルカンの分子間C-H活性化 (R. G. Bergman)
- 1986 アルキル亜鉛の不斉カルボニル付加 (R. Noyori)
- 2001 Noble Prize (不斉触媒) K. B. Sharpless, W. S. Knowles, R. Noyori
- 2005 Noble Prize (メタセシス) Y. Chauvin, R. R. Schrock, R. H. Grubbs
- 2011 Noble Prize(パラジウム触媒)Heck, Suzuki, Negishi

Co-Me結合を

有する

配位子と結合様式

配位子と結合様式

(3) 金属から供与される2 電子で結合を形成:

M : $H_3N \rightarrow BH_3$ M:-→ L Lewis 酸 BR₃ 酸化数 Х LM + BR₃: 金属の酸化数は変化しない LM⁺ + BR₃⁻: 金属の酸化数は+2 Μ PPh_3 Β $R_2P_1 + PR_2$ $R_2P_{Ir}-PR_2$ $R_2P_1+PR_2$ CO P^{-} R_{2} R_2 Н н R_2 н PPh₃ Ir(I) or Ir(III)の寄与 COとホスフィンの交換が容易に進行 Ir(I)の方がCOと強く結合 八面体構造 lr(III)のd。錯体

・・・lr(III)の寄与が大きい。(Ir(I)はd₈で平面構造をとる) 6

形式酸化数、価電子数

中心金属の形式酸化数、錯体の価電子数金属と配位子の結合

形式酸化数、価電子数の数え方

共有結合モデル	Mn (d ⁷)	7e	金属-配位子間を実線で結ぶ	
Me OC、│∠CO	Me	1e	(共有結合を表す)	
OC CO	CO (x5)	10e	Mn-Me: 中性のMnとMe・が1電子ずつ 出し合って結合を形成	
CO	価電子数	18e	Mn-CO: CO配位子から2電子	
イオン結合モデル Me ⁻	Mn(I) (d ⁶) Me ⁻	6e 2e	結合に必要な電子対が配位子側から供与 M ← :L	
OC. ↓ .CO Mn ⁺	CO (x5)	10e	Mn-CO : CO配位子(中性配位子) Mn ← : CO (酸化数は変化しない)	
oc* ≬ °co co	価電子数	18e	Mn-Me :共有電子を配位子に割り当てる Mn ⁺ ← :Me ⁻ Mnの形式酸化数は「1」	
	— —			

1電子はMn-Me結合に使用・・・6電子がMn(I)のd軌道に分布 d⁶と表記、

配位子と結合様式

属との結合に関与する原子数(連続した)	κ 配位数(ηの制限はない)		
Ligand	Туре	Covalent Model	Ionic Model
Me, Ph, H, Cl, η ¹ -allyl, NO (bent)	Х	1e	2e
Lone pair donors : CO, NH ₃ , PPh ₃	L	2e	2e
π -Bond donor	L	2e	2e
σ -Bond donor	L	2e	2e
μ-CI bridging	L	2e	2e
η ³ -allyl, κ^2 -acetate	LX	3e	4e
NO (linear)		3e	2e
η ⁴ -butadiene	L_2	4e	4e
=O (oxo)	X ₂	4e	2e
η ⁵ -Cp	L_2X	5e	6e
η ⁶ -benzene	L_3	6e	6e

多座配位子

二座配位子 bidentate dppe : 1,2-Bis(diphenylphosphino)ethane bipy : 2,2'-Bipyridine Ph₂P PPh₂ cod: 1,5-cyclooctadiene bipy (bpy) dppe cod 三座配位子 tridentate Carbaborane $[RCB_{10}H_{10}]^{-3} [R_2C_2B_9H_9]^{2-3}$ Μ facial Η Θ В Η Н B fac Cp* Тр Ср tacn Cp: cyclopentadienyl Cp*: 1,2,3,4,5-pentamethylcyclopentadienyl meridional tacn: 1,4,7-triazacyclononane Tp : tris(pyrazolyl)borate $Ph_{2}P$ -PPh₂ Ph₂P----PPh₂ M--Mmer

問題 形式酸化数、価電子数

形式酸化数 d電子数 価電子数

形式酸化数、価電子数

6	イオン結合も	ミデル		イオン結合モデル		
H ₂ C Me	Ti(IV) (d ⁰)	0e		Mn(0) (d ⁷) :	x 214e	
	Pt(II) (d ⁸)	8e	OC-Mn-Mn-CO	CO x 10	20e	
	Ср⁻ х 2	12e			34e	
	μ-Cl⁻	4e	CO CO			
	μ-CH2 ²⁻	4e				
	Me⁻	2e				
	PMe ₃	2e				
		32e				

18電子則

遷移金属の原子価軌道

- (n-1)d軌道 x 5、ns x 1、np x 3 · · · 価電子18: 閉殻構造
- \rightarrow 18電子則 (eighteen electron rule)
 - 有効原子番号則 (effective atomic number, EAN, rule)

金属 t_{2q} 軌道と配位子の軌道相互作用

t_{2a}軌道が安定化

例: カルボニル配位子 CO
 π 受容性配位子
 π-acceptor ligand
 金属から配位子への電子供与
 π 逆供与 (π-back donation)

例: ハロゲン配位子 Cl⁻, Br⁻

π供与性配位子 π-donor ligand

配位子場分裂の大きさ

配位子場分裂の大きさ

 \leftarrow low Δ

 $I^{-} < Br^{-} < CI^{-} < F^{-} < H_{2}O < NH_{3} < PPh_{3} < CO, H < SnCl_{3}^{-}$

6配位錯体のd-d 遷移吸収波長から

 \leftarrow π -donor / weak σ donor

 π -acceptor / strong σ donor \longrightarrow

 $\mathsf{Mn}^{2+} < \mathsf{V}^{2+} < \mathsf{Co}^{2+} < \mathsf{Fe}^{2+} < \mathsf{Ni}^{2+} < \mathsf{Fe}^{3+} < \mathsf{Co}^{3+} < \mathsf{Rh}^{3+} < \mathsf{Ir}^{3+} < \mathsf{Pt}^{4+}$ $\longleftarrow \mathsf{Iow} \Delta \qquad \qquad \mathsf{High} \Delta \longrightarrow$

- 配位子分裂パラメーター △。の大きさ
- (1) 中心金属が同一の場合

高スピン錯体

 $K > \Delta_{o}$

- (2) 同族元素の場合
- (3) 中心金属が同じであれば、配位子によって変化

高スピン錯体 (high-spin complex)、低スピン錯体 (low-spin complex)

有機金属錯体・・・∆。が大きく、18電子以下の錯体が形成する。 炭素配位子、リン配位子の結合では共有結合性が大きい

High $\Delta \longrightarrow$

Werner型錯体・・・△。が小さく、高スピン錯体になりやすい 18電子以上の錯体の形成 [Co(NH₃)₆]²⁺ M-Lのイオン結合性が大きい

K: 交換相互作用

低スピン錯体

 $K < \Delta_{o}$

Jahn-Teller 効果

6配位のCu²⁺のd⁹錯体は八面体構造から歪む傾向にある。 高スピン d⁴錯体、低スピンd⁷錯体も同様な歪を示すことがある。

酸化数と配位子(ソフト、ハード)

soft ligand set

高酸化数側ではハード配位子、低酸化数側ではソフト配位子が結合

- ・ イオン化ポテンシャル・・・ 原子(気相)から電子を取り除くエネルギー
- ・ 左から右に向かってイオン化ポテンシャルは増加
 電気陰性度がより大きい元素・・・軌道エネルギーはより低い
 有効核電荷が大きくなる傾向と同じ

有効核電荷 別の電子からの反発による 核のクーロン引力の遮蔽

- +3以上の高酸化状態を取る傾向:第一遷移系列<第二遷移系列<第三遷移系列
 Pt(IV)錯体は単離可能。、Ni(IV)錯体の発生は困難(Os(VIII) vs Fe(VIII), Ir(V) vs Co(V))
- 塩基性の傾向: 第一遷移系列<第二遷移系列<第三遷移系列 の順に塩基性が強まる
- 4s/3d, 5s/4d, 6s/5d軌道のエネルギーが近く複雑な電子配置を取るため、大小関係がまちまち

サイズの傾向

共有結合半径 左から右に向かって減少

第一遷移系列<第二遷移系列

周期表の縦

重元素では、1s電子の速度vが増加する (式1)。 電子質量の増加 (式2) とBohr半径の減少 (式3)。

(1)
$$v = \frac{cZ}{137}$$
 (2) $m = \frac{m_0}{\sqrt{1 - \left(\frac{v}{c}\right)^2}}$ (3) $a_0 = \frac{4\pi e_0 \hbar}{m_e e^2}$

1s軌道の収縮・・・6s軌道の収縮とエネルギー準位の低下 核遮蔽効果の増加による有効核電荷の減少

第二遷移系列と第三遷移系列はほぼ同じ ランタノイド収縮のため

f 電子効果(遮蔽効果が小さい)により 主量子数の増加による効果を打ち消す ◆ 5d金属では、結合エネルギーが増大 s軌道収縮による内殻電子と配位子の反発が低下

18電子則の適用範囲

中心金属の種類、酸化数、d電子数、配位子に影響を受ける

錯体	配位数	価電子数	幾何構造
d ⁶ 錯体	6	18	八面体形
d ⁶ 錯体	5	16	四角錘形
d ⁸ 錯体	5	18	三方両錘形、四角錘形
d ⁸ 錯体	4	16	平面四角形
d ⁸ 錯体	3	14	T字形
d ¹⁰ 錯体	4	18	四面体形
d ¹⁰ 錯体	3	16	D _{3h} 対称形
d ¹⁰ 錯体	2	14	直線形

配位数 4

16電子錯体となる場合がある

金属—配位子結合に関与する 原子価軌道はs, p軌道

配位数 3 平面三角形(D_{3h}) Trigonal Planar <mark>(d¹⁰ 16電子錯体</mark>)

三角錐形 Trigonal Pyramidal (d¹⁰) Ph₃P^{Au⁺}PPh₃ P

D_{3h}対称錯体の分子軌道

4e'軌道の構成

d¹⁰ 16電子錯体

3a'₁~4e'の8個の軌道に2電子ずつ収容 d⁸ 14電子錯体

3a'₁~4a'₁に2電子ずつ、4e'に1電子ずつ
 ・・・T字形の閉殻構造が安定となる
 (C,Dの縮退が解け、Dが安定化するため)₂₅

2配位錯体

直線形 Linear (d¹⁰)

Ph₃P-Au-Cl

(Ag(I), Cu(I), Au(I) and Hg(II)

立体的要因

Bartlett, R. A. Power, P.P. J. Am. Chem. Soc. **1987**, 109, 7563

Deng, L. Inorg. Chem. 2015, 54, 8808

Bartlett, R.A.; Chen, H.; Power, P.P. Angew. Chem. Int. Ed. Engl. **1989**, *88*, 316.