不均一系・均一系の触媒反応

2019年度 有機金属化学第7回

不均一触媒

- ・担持された金属、金属酸化物
- ・触媒の耐久性、活性が高い
- ・生成物と触媒の分離が容易
- ・選択性は低い
- ・主にバルク化学品の製造に用いられる

均一系触媒

- ・反応系に可溶な金属錯体を利用
- ・分子性で単一の反応点を有し、選択性が高い

- ・生成物と触媒の分離に分液や蒸留が必要
- ・主に精密化学品の製造に用いられる

均一触媒に特徴的なプロセス

- ・Pd触媒によるエチレンのアセトアルデヒドへの酸化(Hoechst-Wacker法)
- ・Ni触媒によるブタジエンのアジポニトリルへのヒドロシアノ化(DuPont法)
- ・Rh, Ru触媒によるCOのエチレングリコールへの還元的カップリング
- ・不斉触媒反応、水素化反応、異性化反応、酸化反応など

均一系触媒の工業化

開発年	均一系触媒	反応プロセス	企業名
1940年代	Co カルボニル	アルケンのヒドロホルミル化	Ruhrchemie
1950年代	Co / Mn 酢酸塩	p-キシレンの酸化	Dynamit Nobel / Hercules
1960	Pd / Cu 塩化物	エチレンの酸化	Hoechst-Wacker
1966	Co ホスフィン	アルケンのヒドロホルミル化	Shell
1966	Co / ŀ	メタノールのカルボニル化	BASF
1970	Rh / ŀ	メタノールのカルボニル化	Monsanto
1971	Ni / ホスフィン	ブタジエンのヒドロシアノ化	DuPont
1974	Rh / Chiralホスフィン	L-DOPA	Monsanto
1976	Rh / PPh ₃	アルケンのヒドロホルミル化	Union Carbide Johnson
1977	Ni / PO二座配位子	エチレンのオリゴマー化(SHOP法)	Shell
1980年代	Ti / ROOH / 酒石酸配位子	アリルアルコールの不斉エポキシ化	May&Baker, Upjon, ARCO
1983	Rh / I [_] / [R ₄ P]I	酢酸メチルのカルボニル化	Tennessee Eastman
1983	Rh / Chiral ホスフィン	L-メントール	高砂香料工業
1984	Rh / ホスフィン / 水系	アルケンのヒドロホルミル化	Ruhrchemie
1989	Rh / I / [R₄N]I	メタノールと酢酸メチルの複合カルボニル化	BP Chemicals
1996	Pd / ホスフィン	ポリケトン	Shell
1996	lr / l- / Ru	メタノールのカルボニル化	BP Chemicals

金属ヒドリド錯体へのアルケン挿入機構

アルケンの水素化:最初は不均一系触媒

反応機構:金属表面のヒドリドへのアルケン挿入とC-H還元的脱離(だと言われている)

反応例

Paul Sabatier Nobel Prize 1912

directivity by polar functional group

アルケンの水素化:均一系触媒の研究

反応機構:金属ヒドリドへのアルケン挿入とC-H還元的脱離(直接確認されている)

Hydrogenation using homegeneous catalysts

アルケンの水素化:高活性触媒

Hydrogenation using homegeneous catalysts

Carbtree catalyst. strong substituent directing by OH, ester, amide etc.

EXPERIENCE ADDREADLIC CHEMISTRY OF THE TRANSITION METALS DIMENSITION DIMENSITIO

The Organometallic Chemistry of the Transition Metals, 6th Edition Robert H. Crabtree, Wiley, ISBN: 978-1-118-13807-6

アルケンの水素化:不斉触媒

H+

H-,C=C-COOMe NHCOMe

mir

min

maj

反応機構:金属ヒドリドへのアルケン挿入とC-H還元的脱離(詳細な反応速度解析あり)

MeOOC

Нľ CH₃

 $\left(\begin{array}{c} HN \\ CO_2 Me \\ H \\ C \\ Ph \\ Rh \\ P \end{array} \right)^+$ min

2^{min}

"MINOR" MANIFOLD

Landis, C. R.; Halpern, J., J. Am. Chem. Soc. 1987, 109, 1746-1754,

-PPh₂

-PPh₂

BINAP

min

min

^K2

Me-{Ph-}

<u>3</u>mir

min k₃

単純ケトンの不斉水素化

非対称ケトンを水素化すればキラルな2級アルコールが得られる

Ohkuma, T.; Ooka, H.; Ikariya, T.; Noyori, R., J. Am. Chem. Soc. 1995, 117, 10417-10418.

反応機構:金属ヒドリドとアミン配位子のプロトンによる協奏的な外圏(outer-sphere)機構

Wacker法:アルケンの酸化

 $H_2C=CH_2$ + O_2 -Pd(II) $H_3CHC=O$ Duterrow Tuterrow Tuterrow

反応機構全体:Pd上でのアルケンの反応 + CuによるPd(0)の再酸化

アルケンのヒドロホルミル化

- ・1938年、Otto Roelen (Ruhrchemie社)によって発見:HCo(CO)₄が触媒
- ・年間600万トンを製造する化学産業の基本反応として確立
- ・アルデヒドは不均一系触媒でアルコールに還元され利用される

例) C₁₂~C₁₄アルケン → C₁₃~C₁₅アルコール:合成洗剤(界面活性剤)

- ・商業的には1級生成物の価値が高い=直鎖選択的ヒドロホルミル化が重要となる
- ・1級と2級生成物の間には平衡は無く、選択性は速度論的支配

アルケンのヒドロホルミル化:実際の工業プロセス

反応プロセス	Со	Co / P	Rh / P	Rh / P (二相系)
触媒前駆体	Co ₂ (CO) ₈	Co ₂ (CO) ₈ , PR ₃ *	HRh(CO)(PPh ₃) ₃	HRh(CO)(PR ₃) ₃ **
ホスフィン:金属		2:1	50:1 - 100:1	50:1 - 100:1
圧力 (bar)	200 - 300	50 - 100	15 - 25	40 - 60
温度 (ºC)	110 - 160	160 - 200	80 - 120	110 - 130
触媒濃度 (% Metal/alkene)	0.1 - 1	0.6	0.01 - 0.05	0.001 - 1
n / iso 比	4:1	7:1	8:1-16:1	7:1-19:1
オレフィンの水素化 (%)	< 2	15	5	< 2
高沸点生成物 (%)	5	5	2	< 0.5
触媒回収と再利用	困難	容易	C ₃ , C ₄ オレフィン	容易

容易

**PR₃

 $R = m - C_6 H_4 SO_3 Na$

アルケンのヒドロホルミル化:反応機構

反応機構:

ヒドリド錯体へのアルケンの配位と続く挿入 アルキル配位子へのCOの移動挿入 アシル錯体の加水素分解

スキーム等は左の本からの引用

Homogeneous Catalysis Understanding the Art Piet W. N. M. van Leeuwen Kluwer Academic Publishers ISBN 1-4020-1999-8 Rhヒドリド錯体を用いた際の直鎖・分岐選択性の起源: カルボニル配位子の数で反応性が変わる

アルケンのヒドロホルミル化:高直鎖選択性触媒

Rh触媒において高い直鎖選択性を与えるための配位子とその理由

過剰量のPPh3配位子:前頁の反応機構で10より3を経由するものを増やす

Evans, D.; Yagupsky, G.; Wilkinson, G., J. Chem. Soc. A 1968, 2660-2665.

挟み角の大きなジホスフィン配位子:前頁の反応機構で4eeを経由するものを増やす

Jiao, Y.; Torne, M. S.; Gracia, J.;
Niemantsverdriet, J. W.; van Leeuwen, P. W. N. M.,
Catal. Sci. Technol. 2017, 7, 1404-1414.

13

電子不足で挟み角の大きなビスホスファイト配位子: 前頁の反応機構で**4ee**を経由するものを増やしつつ カルボニル配位子の解離を促して**4e,4a**を経由するものの割合を減らす

酢酸合成:工業的な変遷

初期 (1850 – 1930) 発酵法 アセチレンの水和 (1950 - 1960)

エチレンの酸化(Wacker法)

製品の回収時に水銀が失われる

アルカンの酸化はラジカル連鎖反応。 コバルトは反応開始、アルキル過酸化物の 分解に作用。

メタノールのカルボニル化(Monsanto法)

酢酸合成:モンサント法によるメタノールのカルボニル化

	CH ₃ OH + CO ────►	О Н ₃ С ОН
反応条件	Co (BASF 法)	Rh (Monsanto 法)
圧力 (bar)	500 – 700	30 - 40
温度 (ºC)	230	180
触媒濃度 (M)	約10-1	約10 ⁻³
促進剤	I⁻ (HI)	I⁻(Mel/HI)
選択率	90	> 99
副生成物	CH ₄ , CH ₃ CHO	なし (0.1% 以下)
	C ₂ H ₅ OH, CO ₂	

1966年 BASF社・・・ヨウ化物イオンを反応促進剤とし、Coを触媒とするプロセスを発表。Coは活性が低いので、高温と高圧が必要。原料のCOに含まれるH₂の影響を受ける。

1968年 Monsanto社・・・ヨウ化物イオンを促進剤、Rhを触媒とする低圧プロセスを 発表。1970年工業化。RhはH₂の影響を受けない。

1996年 Chemicals社・・・Ir触媒による「Cativa」プロセスを発表。助触媒はMel + Ru。 Ir触媒はRh触媒よりも安定で、高活性。低濃度のヨウ化物イオンで高い反応速度 を実現。

