多核NMR①:測定しやすい核としにくい核

多核NMR:

(核の種類による)検出感度(同じ濃度の時)

 $S = I(I+1)\nu_0^3 N$

I:核スピン ν₀:共鳴周波数 N:核スピン濃度

相対感度(¹³C核を基準)

$$R' = \left[\frac{I(I+1)}{\frac{1}{2}(\frac{1}{2}+1)} \right] \times \left[\frac{\nu_0}{\nu_{13C}} \right]^3$$

総合相対感度 (天然存在比も考慮して¹³C核を基準)

有機分析化学第8回(2020/5/12)

よく利用されるI=1/2の核

¹⁵N (0.37%), ¹⁹F (100%), ²⁹Si (4.7%), ³¹P (100%) ⁷⁷Se (7.58%), ¹¹¹Cd (12.75%), ¹¹⁹Sn (8.58%) ¹²⁵Te (6.99%), ¹⁹⁵Pt (33.8%), ²⁰⁷Pb (22.6%)

よく利用されるI=1/2以外の核

²H (*I* = 1, 0.015%), ⁷Li (*I* = 3/2, 92.6%) ¹¹B (*I* = 3/2, 81.2%), ¹⁴N (*I* = 1, 99.6%) ¹⁷O (*I* = 5/2, 0.037%)

線幅因子 (line width factor)

他の核とのカップリングがよく利用される核

¹⁰³Rh (I = -1/2, 100%) ¹⁰⁷Ag (I = -1/2, 51.82%), ¹⁰⁹Ag (I = -1/2, 48.18%)

三共出版「多核種の溶液および固体NMR」
北川進,水野元博,前川雅彦 著、竹内敬人・西川 実希 訳
ISBN: 9784782705681
核スピンや感度、それぞれの核の基準物質などのデータが多数掲載

1

多核NMR②:それぞれの核の共鳴周波数と化学シフト

多核NMR各論:²H NMRスペクトル

²H, 核スピンI = 1, 天然存在比0.015%, 磁気回転比 $\gamma = 4.1066$ 四極子モーメント = 2.8×10^{-3} , 相対総合感度 = 1.45×10^{-6} 化学シフト基準はSi(CD₃)₄ = 0

応用例: styrene-d₈のMeReO₃を用いた 例:部分重水素化された化合物8のスペクトル 触媒的ジヒドロキシ化反応速度測定 ¹H NMR spectrum (C_6D_6) $k_{\rm obs}/[{\rm Re}]_T/$ Solvent^b $M^{-1} s^{-1}$ Reaction^a OCH₃ [EtPy]BF₄ 0.20 ± 0.02 100 H₂O₂(aq) 18 mol % MTO H_{3a} Α 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 ppm ²H NMR spectrum (C_6D_6) 0.05 [D8]Styrene-1,2-diol CI D_2 0.04 Integration/ a.u. 0.03 0.02 D_{3b} в 0.01 [D8]Styrene 0.00 20 40 60 80 100 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 ppm t/ min J. Mol. Cat. B: Enzymatic 2011, 73, 17. Fig. 1 [D₈]Styrene dihydroxylation, 0.5 M H₂O₂. Chem. Commun. 2002, 66.

多核NMR各論: 7Li, 6Li NMRスペクトル

J. Am. Chem. Soc. 1998, 120, 7201.

多核NMR各論:¹¹B NMRスペクトル

http://u-of-o-nmr-facility.blogspot.jp/2008/04/11-b-cosy.html http://u-of-o-nmr-facility.blogspot.jp/2008/04/1-h-11-b-hmqc.html

多核NMR各論:¹⁵N NMRスペクトル

¹⁵N, 核スピン*I* = -1/2, 天然存在比0.37%, 磁気回転比γ = -2.716 四極子モーメント = なし, 相対総合感度 = 2.19 × 10⁻² 化学シフト基準はCH₃NO₂ = 0 範囲は約-600~600 ppm

多核NMR各論:¹⁹FNMRスペクトル

¹⁹N, 核スピン*I* = 1/2, 天然存在比100%, 磁気回転比γ = 25.1815 四極子モーメント = なし, 相対総合感度 = 4.73 × 10³ 化学シフト基準はCFCl₃ = 0 範囲は約-300~900 ppm

7

多核NMR各論:²⁹Si NMRスペクトル

²⁹Si, 核スピン*I* = -1/2, 天然存在比4.7%, 磁気回転比γ = -5.3190 四極子モーメント = なし, 相対総合感度 = 4.95 × 10⁻¹ 化学シフト基準はSiMe₄ = 0 範囲は約-200~100 ppm

使用例:固体²⁹Si NMRによる Al,Si含有ゼオライトの分析

多核NMR各論:³¹PNMRスペクトル

³¹P, 核スピン*I* = 1/2, 天然存在比100%, 磁気回転比γ = 10.8394 四極子モーメント = なし, 相対総合感度 = 1.44 × 10² 化学シフト基準は85%H₃PO₄ = 0 範囲は約-400~600 ppm

