有機金属錯体

2021年度 有機金属化学第1回

1

有機遷移金属錯体 organotransition meal complex 遷移金属一炭素結合 主要族元素 (main-group element) アルキルリチウム、Grignard 反応剤

有機金属化合物

1760 [(CH₃)₂As]₂O 初の有機金属錯体 (Cadet) CI CH_2 Na[PtCl₃(C₂H₄)] Zeise 塩 最初のオレフィン錯体 1827 CI ZnEt,不安定化合物の合成(水素雰囲気下実験) (Frankland) 1849 1868 [Pt(CO)Cl₂],初のカルボニル錯体の合成 (M. P. Schutzenberger) マグネシウム反応剤(Mg + CH₃I)の発見 (P. Barbier) 1899 (CH₃)₃PtI 初の遷移金属アルキル錯体の合成 (W. J. Pope) 1909 トランスメタル化によるアルキルリチウムの合成 (W. Schlenk) 1917 LiCH 初の遷移金属ヒドリド錯体 (W. Hieber) 1931 Fe(CO)₄H アルケン、CO、H,から アルデヒド合成(Co触媒) ヒドロホルミル化(オキソ法)の発見 (O. Roelen) 🥣 1938 アルケン錯体の結合理論 (M. J. S. Dewar, J. Chatt, L. A. Duncanson) 1951 Cp₂Fe フェロセンの合成 (P. Pauson, S. A. Miller) 1951 Fe LiCu(CH₃), 有機銅錯体 (organocuprate) の合成 (H. Gilman) 1953

有機金属化合物

- 1955 オレフィン重合触媒 (K. Ziegler, G. Natta) Nobel Prize 1963
- 1956 ヒドロホウ素化 (H. C. Brown) Nobel Prize 1963
- 1959 π-アリルパラジウム錯体 [(η³-C₃H₅)PdCl]₂ (J. Smidt, W. Hafner)
- 1961 Vitamin B₁₂の結晶解析 (D. Crwofood Hodgkins) Nobel Prize 1964
- 1964 初のカルベン錯体 (CO)₅W=C(OMe)Me (E. O. Fischer) Nobel Prize 1973
- 1965 均一系水素化触媒 RhCl(PPh₃)₃ (G. Wilkinson, R. S. Coffey) Nobel Prize 1973
- 1965 パラジウム触媒による炭素-炭素結合カップリング (J. Tsuji)
- 1969 Pt触媒によるC-H結合活性化の先駆的研究 (A. E. Shilov)
- 1981 Si=Si結合 (Mes)₂Si=Si(Mes)₂ (R. West)
- 1982 遷移金属錯体によるアルカンの分子間C-H活性化 (R. G. Bergman)
- 1986 アルキル亜鉛の不斉カルボニル付加 (R. Noyori)
- 2001 Noble Prize(不斉触媒)K. B. Sharpless, W. S. Knowles, R. Noyori
- 2005 Noble Prize (メタセシス) Y. Chauvin, R. R. Schrock, R. H. Grubbs
- 2011 Noble Prize (パラジウム触媒) Heck, Suzuki, Negishi

Co-Me結合

配位子と結合様式

(1) 共有結合性配位子 (covalent ligand)
 配位子と金属から1電子を供与
 1電子供与配位子: X型配位子

 $M \cdot + \cdot X \longrightarrow M - X$

(2) 供与性配位子 (dative ligand)
 配位子から供与される2電子で結合を形成
 (配位結合、dative bond)
 2電子供与配位子: L型配位子

 $M + :L \longrightarrow M \leftarrow :L$

(3) 金属から供与される2電子で結合を形成: Z型配位子

(Ir(I)はd₈で平面構造をとる)

ヒドリド H⁻、ハライド F⁻, Cl⁻, Br⁻, l⁻ アルキル CH_3^{-} 、アルケニル $CH=CH_2^{-}$ アルキニル C = CR⁻、 フェニル C₆H₅⁻ シアノ C = N⁻、 ニトロシル(bent) NO⁻ アニオン性配位子

カルボニル CO π 結合 アミン NH₃ アルケン R₂C=CR₂ ホスフィン PR₃ アルケン RC = CR

中性配位子

形式酸化数、価電子数

中心金属の形式酸化 ・・・ <mark>錯体の幾何</mark> 権	数、錯体の価電子 <mark>構造に影響</mark>	金属と配位子の結合 σ <mark>結合、π 結合、δ 結合</mark>	
形式酸化数:金属中	心の電子密度を示	してはいない	١,
形式酸化数、価電子数	の数え方		
共有結合モデル	Mn (d ⁷)	7e	金属-配位子間を実線で結ぶ
Me OC / CO	Ме	1e	(共有結合を表す)
	CO (x5)	10e	Mn-Me: 中性のMnとMe・が1電子ずつ
co	価電子数	18e	Mn-CO:CO配位子から2電子
イオン結合モデル	Mn(I)((d ⁶))	6e	結合に必要な電子対が配位子側から供与
	Me ⁻	2e	M ← :L Mn-CO ·CO配位子(由性配位子)
	CO (x5)	10e	Mn ← :CO (酸化数は変化しない)
oc∵ ↑ ∵co co	価電子数	18e	Mn-Me :共有電子を配位子に割り当てる Mn ⁺ ← :Me ⁻ Mnの形式酸化数は「1」
11	電子はMn-Me結合	・に使用・・・6	電子がMn(I)のd軌道に分布

d⁶と表記、

5

配位子と結合様式

1	M M	$\frac{1}{M}$	M^{4} -butadiene	$M^{5}-C^{0}$	M ⁶ -benzene	O Me O M	Me O O M
η 1	↓ - anyi X 金属との結↑	「 [」] -allyi LX 合に関与す	「」-butadiene し ₂ る原子数(連続し	ー()) L ₂ X た配位原子)	η -benzene L ₃ □ κ配位数(η	k -acetate X の制限はない)	
	Ligand			Туре	Covalent Mo	odel Ionic Mo	odel
	Me, Ph, F	l, Cl, η ¹ -al	llyl, NO (bent)	Х	1e	2e	
	Lone pair	donors : (CO, NH ₃ , PPh ₃	L	2e	2e	
	π -Bond d	onor		L	2e	2e	
	σ -Bond d	onor		L	2e	2e	
	μ-Cl bridg	ging		L	2e	2e	
	η ³ -allyl, κ	² -acetate		LX	3e	4e	
	NO (linea	ır)			3e	2e	カチオン性
	η ⁴ -butadi	ene		L_2	4e	4e	
	=O (oxo)			X ₂	4e	2e	
	ղ ⁵ -Cp			L_2X	5e	6e	
	η ⁶ -benze	ne		L_3	6e	6e	6
							-

多座配位子

二座配位子 bidentate

terpy

問題 形式酸化数、価電子数

Ti(0) d⁴, Cr(0) d⁶, Fe(0) d⁸, Ru(0) d⁸, Rh(0) d⁹, Ni(0) d¹⁰, Pd(0) d¹⁰

問題 形式酸化数、価電子数

形式酸化数 0 10 d電子数 価電子数 18 0 8 18 +1 8 16 $\begin{array}{c} 2 & 2 & 2 \\ OC & 1 & 6 & PCy_3 & +2 \\ 2 & Ru & 6 \\ Cy_3P & CI & 2 & 16 \end{array} \begin{bmatrix} 2 & 8 & 4 \\ Me_3P & 8 & 4 \\ 2 & Pd & 6 \\ Me_3P & 16 \end{bmatrix}^+ +2 \\ 8 & 16 & 6 & CH_3 \\ 16 & CH_3 \\ 16$ +4 0 16 9

Ti(0) d⁴, Cr(0) d⁶, Fe(0) d⁸, Ru(0) d⁸, Rh(0) d⁹, Ni(0) d¹⁰, Pd(0) d¹⁰

形式酸化数、価電子数

18電子則

遷移金属の原子価軌道

- (n-1)d軌道 x 5、ns x 1、np x 3 · · · 価電子18: 閉殻構造
- → 18電子則 (eighteen electron rule)
 - 有効原子番号則 (effective atomic number, EAN, rule)

配位子場分裂 eg^{*}とt_{2g}のエネルギー差∆_。 配位子場分裂パラメーター

t_{1u}* 八面体型錯体の例 反結合性軌道 (antibonding 金属 金属 配位子 配位子 a_{1g} orbitals) **\$**5 a_{1g} φ1 非結合性軌道 eq (nonbonding e_a*≯ φ6 orbitals) S φ2 t_{2g} d t_{1u} φ₃ ea $\phi_1 \sim \phi_6$ t_{2g} t_{1u} **\$**4 配位子側に対称性の 一致する軌道は存在し a_{1g} 18 e ない O_h群の指標表 Cp₂Fe (18 e) 反磁性

提唱:1927年 N. V. Sidgwick (シジウイック)

Cp₂Ni (20 e) 常磁性

金属 t_{2q} 軌道と配位子の軌道相互作用

t_{2g}軌道が安定化

金属t_{2g}軌道と空のπ対称性軌道 の相互作用 ・・・Δ₀増加

例: カルボニル配位子 CO
 π 受容性配位子
 π-acceptor ligand
 金属から配位子への電子供与
 π 逆供与 (π-back donation)

金属t_{2g}軌道とπ対称性軌道 の相互作用 ・・・∆_o減少

例: ハロゲン配位子 Cl⁻, Br⁻

π供与性配位子 π-donor ligand 配位子場分裂の大きさ

配位子場分裂の大きさ

 $I^- < Br^- < CI^- < F^- < H_2O < NH_3 < PPh_3 < CO, H < SnCl_3^-$

 \leftarrow low Δ

High $\Delta \longrightarrow$

6配位錯体のd-d 遷移吸収波長から <mark>分光化学系列</mark>

 \leftarrow π -donor / weak σ donor

 π -acceptor / strong σ donor \longrightarrow

 $\begin{array}{l} \mathsf{Mn}^{2+} < \mathsf{V}^{2+} < \mathsf{Co}^{2+} < \mathsf{Fe}^{2+} < \mathsf{Ni}^{2+} < \mathsf{Fe}^{3+} < \mathsf{Co}^{3+} < \mathsf{Rh}^{3+} < \mathsf{Ir}^{3+} < \mathsf{Pt}^{4+} \\ \hline \mathsf{High} \ \Delta \end{array}$

配位子分裂パラメーター Δ_0 の大きさ (1) 中心金属が同一の場合 高酸化状態の方が Δ_0 が大きくなる (2) 同族元素の場合 3d < 4d < 5d の順に Δ_0 が大きくなる (3) 中心金属が同じであれば、配位子によって変化

高スピン錯体 (high-spin complex)、低スピン錯体 (low-spin complex)

有機金属錯体・・・ Δ_oが大きく、18電子以下の錯体が形成する。 炭素配位子、リン配位子の結合では共有結合性が大きい σ*軌道であるe_a*軌道の不安定化の度合いが大きい

Werner型錯体・・・△。が小さく、高スピン錯体になりやすい 18電子以上の錯体の形成 [Co(NH₃)₆]²⁺ M-Lのイオン結合性が大きい 反結合性相互作用によるe_a*軌道の不安定化が小さい

K: 交換相互作用

高スピン錯体

 $K > \Delta_{o}$

低スピン錯体

 $K < \Delta_{o}$

Jahn-Teller 効果

6配位のCu²⁺のd⁹錯体は八面体構造から歪む傾向にある。 高スピン d⁴錯体、低スピンd⁷錯体も同様な歪を示すことがある。

酸化数と配位子(ソフト、ハード)

Hard: 電荷密度大 F ⁻ , H ⁺ Soft: 電荷密度小 I ⁻ , Hg ⁺	Re錯体	kのdī	電子数と配位子		
			hard	d ligand :	set
Hard acid	ď	7	Cp*ReO ₃	♦ O, F	π-donor
局酸化状態の遷移金属 しますも he co	d^1	6	ReOF ₄	Me	e, H, Cp, Cl anionic
Hard base	d ²	5	Cp*ReMe ₄	↓ ↑,	
H_2O , NH_3 , F-, CF	ď ³	4	ReCl ₄ (PPh ₃) ₂		Neulial PR3
Soft acid	d ⁴	3	Cp ₂ ReH		
低酸化状態の遷移金属	d ⁵	2	[ReCl(CO)(PMePh ₂) ₄]	+ 🕴	
Ni(0), Re(I), Pt(II), Ti(II)	ď ⁶	1	ReCl(CO) ₃ (PPh ₃) ₂		
Soft base	d^7	0	Re ₂ (CO) ₁₀	¥	π-acceptor
Br-、ホスフィン、CN-、	d ⁸	-1	[Re(CO) ₅]-		CO
アルケン、ベンゼン	d ⁹	-2			
	<i>d</i> ¹⁰	-3	[Re(CO) ₄] ₃ -		¥

soft ligand set

高酸化数側ではハード配位子、低酸化数側ではソフト配位子が結合

dブロック元素のサイズの傾向

共有結合半径

左から右に向かって減少

有効核電荷の増加が大きくなるため d軌道エネルギーが低下する

周期表の縦

第一遷移系列<第二遷移系列

主量子数が大きいため

内殻のd軌道との重なりを避けるため

第二遷移系列と第三遷移系列はほぼ同じ ランタノイド収縮のため

f 電子効果(遮蔽効果が小さい)により 主量子数の増加による効果を打ち消す 相対論効果

重元素では、1s電子の速度vが増加する (式1)。 電子質量の増加 (式2) とBohr半径の減少 (式3)。

(1)
$$v = \frac{cZ}{137}$$
 (2) $m = \frac{m_0}{\sqrt{1 - \left(\frac{v}{c}\right)^2}}$ (3) $a_0 = \frac{4\pi e_0 \hbar}{m_e e^2}$

1s軌道の収縮・・・6s軌道の収縮とエネルギー準位の低下 核遮蔽効果の増加による有効核電荷の減少

・・5d軌道の拡大

5d金属では、結合エネルギーが増大 s軌道収縮による内殻電子と配位子の反発が低下 5d軌道と配位子軌道の重なりの増大

18電子則の適用範囲

中心金属の種類、酸化数、d電子数、配位子に影響を受ける

錯体	配位数	価電子数	幾何構造
d ⁶ 錯体	6	18	八面体形
d ⁶ 錯体	5	16	四角錘形
d ⁸ 錯体	5	18	三方両錘形、四角錘形
d ⁸ 錯体	4	16	平面四角形
d ⁸ 錯体	3	14	T字形
d ¹⁰	4	18	四面体形
d ¹⁰ 錯体	3	16	D _{3h} 対称形
d ¹⁰ 錯体	2	14	直線形

配位数 4 四面体形(T_d) 平面四角形 (D_{4h}) PPh₃ COTetrahedral (d⁰) (d^{5 hs}) (d¹⁰) Square Planar (d⁸) Ph₃ COeu t_2 a p_x, p_y a_{2u} a_1 pz р b_{1g} t₂ S t₂ $d_{\underline{x}^{2}-\underline{y}^{2}}$ b_{2g} a₁ d_y, $d_{z^2}, d_{x^2-y^2}$ е е d a_{1g}` d_{zx}, d_{yz} t_2 \mathbf{e}_{q} d_{xy}, d_{yz}, d_{xz} b_{1g} t₂ e_ut₂ b_{1g} a_{1g} a a_1 eu 18e a_{1g} 16e 18電子d¹⁰錯体 9,10族遷移金属

16電子錯体となる場合がある

金属—配位子結合に関与する 原子価軌道はs, p軌道

2配位錯体

直線形 Linear (d¹⁰)

Ph₃P-Au-Cl

(Ag(I), Cu(I), Au(I) and Hg(II)

立体的要因

Bartlett, R. A. Power, P.P. J. Am. Chem. Soc. **1987**, 109, 7563

Deng, L. Inorg. Chem. 2015, 54, 8808

Bartlett, R.A.; Chen, H.; Power, P.P. Angew. Chem. Int. Ed. Engl. **1989**, *88*, 316.

(付録1)対称操作、マリケン記号

対称操作 (symmetry operation)

- (1) 回転; C_n 2π/nの回転 (n回回転軸)
- (2) 写像: σ_h 主軸に垂直な対称面、σ_v 主軸を含む対称面
- (3) 写映(反転): i
- (4) 回映(回反): S_n C_n軸で回転してから、主軸に直交する対称面に写像 C_n x σ
- (5) 恒等操作: E なにもしない

例

- C_{nv} C_{2v}:水、C_{3v} アンモニア
- $C_{\rm nh} C_{\rm 4h}$: Rh₂(OAc)₄
- D_{nh}: 主軸C_n に垂直なn本の2回回転軸を持ち、主軸に垂直な対称面を持つ D_{ah}: ベンゼン
- *D*_{nd}: 主軸C_n に垂直なn本の2回回転軸を持ち、2本の2回回転軸の間の角を 二等分する対称面 (σ_d面)を持つ
- $S_n: S_4$ 4回回転後に主軸に垂直な面で写映

マリケン記号 (Mulliken symbol) の約束

- (1) 1次元表現 A, B、 2次元表現 E、 3次元表現 T
- (2) 主軸 C_n軸周りに回転した時に元と重なる場合 A、反対称になる場合 B
- (3) 主軸に垂直なC₂軸 (C₂軸がない場合は主軸を含む対称面)に対称 1、反対称 2
- (4) σ_h面に対して、対称 [']、反対称
- (5) 対称心がある場合、反転対称 g (gerade)、反転反対称 u (ungerade)
- (6) E, Tの添字は指標表からは決まらないので、一般的には任意の記号

指標表 https://ja.webqc.org/symmetry.php

(付録2)指数表の読み方

$2P_v$	$2P_x$	$2P_z$	2s	
1 ′	1	1	1	
-1	-1	1	1	σ _v yz面
1	-1	1	1	σ _v ' xz面
-1	1	1	1	
	2P _y 1 -1 1 -1	2P _y 2P _x 1 1 -1 -1 1 -1 -1 1	2P _y 2P _x 2P _z 1 1 1 -1 -1 1 1 -1 1 -1 1	2P _y 2P _x 2P _z 2s 1 1 1 1 1 -1 -1 1 1 1 -1 1 1 -1 1 1

各軌道が各対称操作にどのように変換されるかを調べる。 対称性が保持すれば "1"、反転すれば "-1" とする(表1)。 表1をまとめたものが以下の指標表 (character table)となる(表2)。

位数 表2 C_{2v}点群の指標表 C_{2v} $2p_{z}$ 2s Ε σ_v h = 4 C_2 σ_{v} p,軌道はC2v群に属 Z, Z^2, X^2, Y^2 $T_{\rm z}$ 1 A_1 1 1 1 する分子ではすべて R_{z} の対称操作に対して A_2 -1 -1 $T_{\rm y}, R_{\rm x}$ 不変 B_1 1 -1 1 -1 $T_{\rm x}, R_{\rm v}$ B_2 1 -1 -1 1 例)s軌道の既約 表現はA1となる x, y, z:座標軸、T各軸の並進運動、R各軸まわりの回転

マリケン記号 X, y, z: 座標軸、/ 谷軸の並進運動

A₁ という表現に含まれる状態や軌道(s, p_z軌道)は(1, 1, 1, 1)という指標をもつ。 B₁ という表現に含まれる状態や軌道(p_v軌道)は(1, -1, 1, -1)という指標をもつ。

(付録3)既約表現と直積

 A_1 の指標 (1, 1, 1, 1) B_1 の指標 (1, -1, 1, -1) \cdots それ以上に分割して他の表現の和や差に分けることができない。

A₁ + B₁ = (2, 0, 2, 0) ? ← 可約表現 (reducible representation) ・・・既約表現の和で表すことができる表現

(2, 0, 2, 0)にA₂が含まれるか?・・・直積 (direct production)をとる

Е	C_2	σ_v	σ_v

- 2 0 2 0
- A₂ 1 1 -1 -1

2 0 -2 0 ←上下を掛け、横に足すと2+0-2+0=0····「直積をとる」 0 の場合、「(2, 0, 2, 0)には A_2 が含まれない」ことを示している。

(2, 0, 2, 0)にA₁が含まれるか?

0

1

0

 $C_2 \sigma_v \sigma_v'$

2

1

2

0

1

0

Ε

2

1

2

 A_2

C_{2v}群の位数(全ての対称要素の数)に一致 直積の各項の和が位数の整数倍 (n) になるとき 「この表現はOO表現をn回含んでいる」という。 ・・・(2,0,2,0)はA1表現を1回含んでいる

28

(付録4)水 (C_{2v}群)の群軌道

水分子

2つのHの1s軌道が作る群軌道がなぜ $\Psi_{a}+\Psi_{b}, \Psi_{a}-\Psi_{b}$ で表されるのか?

表2 C_{2v}点群の指標表

C_{2v}	Е	<i>C</i> ₂	σ_v	σ_{v}	h	= 4
A_1	1	1	1	1	Tz	z, z², x², y²
A_2	1	1	-1	-1	R _z	ху
B_1	1	-1	1	-1	$T_{\rm y'}, R_{\rm x}$	y, zx
<i>B</i> ₂	1	-1	-1	1	$T_{\rm x}, R_{\rm y}$	x, yz ₂₉

同じ対称性の軌道間で結合性、反結合性軌道ができる

Oの原子軌道 水の分子軌道 Hの群軌道

(付録5)水 (C_{2v}群)の群軌道の作り方

群軌道の作り方

1. 1つの配位子の軌道Ψ_AがC_{2v}群の対称操作によっ てどのように変換されるかを調べる

E C_2 σ_v σ_v' Ψ_A は ($\Psi_A, \Psi_B, \Psi_A, \Psi_B$)という Ψ_A Ψ_B Ψ_A Ψ_B 表現に変換される

2. $(\Psi_A, \Psi_B, \Psi_A, \Psi_B)$ が $A_1 \sim B_2$ の各表現でどのような関数に変換されるかを調べる・・・直積を求める

(i) A	1表現	ŧ			(ii) A	、2 表現	見		
	Е	C_2	σ_v	σ_{v} '		Е	C_2	σ_{v}	σ , '
	$\Psi_{\rm A}$	Ψ_{B}	$\Psi_{\rm A}$	$\Psi_{\rm B}$		Ψ_{A}	Ψ_{B}	$\Psi_{\rm A}$	$\Psi_{\rm B}$
A ₁	1	1	1	1	A ₂	1	1	-1	-1
	$\Psi_{\rm A}$	$\Psi_{\rm B}$	Ψ_{A}	Ψ_{R}		$\Psi_{\rm A}$	$\Psi_{\rm B}$	$-\Psi_A$	-Ψ _B
			$= 2\Psi_{A}$	$_{A}$ + 2 Ψ_{B}					= 0
(ii) B ₁ 表現									
(ii) E	8₁表理	見			(iv) l	B ₂ 表	現		
(ii) E	³ ₁ 表玎 E	見 C ₂	σ _v	σ _v '	(iv) l	3 ₂ 表 E	現 C ₂	σ_v	σ _v '
(ii) E	B ₁ 表現 E Ψ _A	見 C ₂ Ψ _B	$\sigma_{v} \ \Psi_{A}$	σ _v ' Ψ _B	(iv) I	B ₂ 表 E Ψ _A	現 C2 Ψ _B	$\sigma_{v} \ \Psi_{A}$	$\sigma_{v}' = \Psi_{B}$
(ii) E	B_1 表现 E Ψ_A 1	見 C ₂ Ψ _B -1	σ _v Ψ _A 1	σ <mark>ν</mark> ' Ψ _Β -1	(iv) I <u>B</u> 2	$B_2 \overline{R}$ E Ψ_A 1	現 C ₂ Ψ _B -1	σ _v Ψ _A -1	σ _v ' Ψ _B 1
(ii) E 	B_1 表到 E Ψ_A 1 Ψ_A	見 C ₂ 平 _B -1 -平 _B	σ_{v} Ψ_{A} 1 Ψ_{A}	σ _v ' Ψ _B -1 -Ψ _B	(iv) I <u>B</u> ₂	$B_2 \frac{\mathbf{E}}{\mathbf{E}}$ $\frac{\Psi_A}{1}$ $\frac{\Psi_A}{\Psi_A}$	現 C_2 Ψ_B -1 $-\Psi_B$	σ _v Ψ _A -1 -Ψ _A	$ \begin{array}{c} \sigma_{v}' \\ \Psi_{B} \\ 1 \\ \hline \Psi_{B} \end{array} $

2つの水素原子が作る群軌道は $2\Psi_A + 2\Psi_B$, $2\Psi_A - 2\Psi_B$ であり、 これらの群軌道は A_1 、 B_1 に帰属されることが分かる。

(付録6) C_{3v} アンモニア分子の群軌道の作り方

1s

31

NH₃分子

H原子

(付録7)O_nの群軌道の作り方

正八面体には48個の対称的な操作がある。"Φ1"が対称操作によってどのように変換されるかを調べる。

C3: 三角形の面の中心から反対の面の中心を結ぶ直線(8個): 2Ф2 + 2Ф4 + 2Ф5 + 2Ф6 $8C_3$ $C_3(125)^+$ $C_3(125)^-$ 2 5 $C_3(235)^+$ $C_3(235)^-$ 6 4 $C_3(415)^+$ C₃(414)⁻ 2 6 5 C₄:2つの頂点を結ぶ直線(6個):2Φ1+Φ2+Φ4+Φ5+Φ6 $6C_4$ $C_4(56)$ $C_4(56)^{-1}$ $C_4(24)^{-}$ 3//// www.4 3,,, 5 6 2 4 C₂: 2つの頂点を結ぶ直線(3個): Φ1 + 2Φ3 $3C_2$ $C_2(13)$ $C_2(24)$ $C_2(56)$ 3,,,,| 3,,,, 3 C₂':辺の中心から向かい合う辺の中心を結ぶ直線(6個): Φ2 + 2Φ3 + Φ4 + Φ5 + Φ6 $6C_{2}'$ C₂'(12) $C_{2}'(45)$ C₂'(15) 5 3 2 3

32

(付録7) O_hの群軌道の作り方

i:対称中心に関する鏡映(1個):Φ3

S₆:C₃と同じ軸での回転鏡映(8個): 2Ф2 + 2Ф4 + 2Ф5 + 2Ф6

(付録7) O_nの群軌道の作り方

以「	下の関数が得られる	5
----	-----------	---

O_b点群の指標表

- C₃: 2(Φ2+Φ4+Φ5+Φ6)
- С₄: 2Ф1+Ф2+Ф4+Ф5+Ф6
- C₂: Φ1+2Φ3
- $C_2': \Phi 2 + 2\Phi 3 + \Phi 4 + \Phi 5 + \Phi 6$ i: Φ3
- S_{6} : 2(Φ 2+ Φ 4+ Φ 5+ Φ 6)
- C₄: Φ2+2Φ3+Φ4+Φ5+Φ6
- σ_h: 2Φ1+Φ3
- σ_d: 2Φ1+Φ2+Φ4+Φ5+Φ6
- E_{g} 0 0 1 -1 3 T_{1e} 3 0 -1 -1 1 T_{2g} 1 A_{1u} -1 -1 A_{2u} 2 0 $E_{\rm u}$

- $O_{\rm h}$ E $8C_3$ $6C_4$ $3C_2$ $6C_2'$ i $8S_6$ $6S_4$ $3\sigma_{\rm h}$ $6\sigma_{\rm d}$ h = 48 A_{1g} 1 1 1 1 1 1 1 1 $x^2 + y^2 + z^2$ 1 1 s動道 1 -1 1 A2g -1 $(3z^2-r^2, x^2-y^2)$ d 軌道 2 0 $(R_{\rm x}, R_{\rm y}, R_{\rm z})$ -13 0 -1(xy, yz, xz)d軌道 -1 -1 -11 -2 -2 0 3 1 -1 T_{1u} -1 -3 $(T_x, T_y, T_z)(x, y, z)$ o 動道 -1 1 T_{2u} 3 0 -1 -1 1 -3 1 -1
- それぞれの関数とそれぞれの表現(例えばA10)との直積をとる
 - $A_{1a} = {\Phi1} + {2(\Phi2 + \Phi4 + \Phi5 + \Phi6)} + {2\Phi1 + \Phi2 + \Phi4 + \Phi5 + \Phi6} + {\Phi1 + 2\Phi3} + {\Phi2 + 2\Phi3 + \Phi4 + \Phi5 + \Phi6} + {\Phi3}$

 - $= 8\Phi 1 + 8\Phi 2 + 8\Phi 3 + 8\Phi 4 + 8\Phi 5 + 8\Phi 6 = 8(\Phi 1 + \Phi 2 + \Phi 3 + \Phi 4 + \Phi 5 + \Phi 6)$

同様に各表現との直積を計算する。EgとT1u以外はOになる

- $E_{q} = 4(2\Phi 1 \Phi 2 + 2\Phi 3 \Phi 4 \Phi 5 \Phi 6)$
- $T_{11} = 8(\Phi 1 \Phi 3)$
- E_gでは入替を考慮すると4(-Φ1+2Φ2-Φ3+2Φ4-Φ5-Φ6)と4(-Φ1-Φ2-Φ3-Φ4+2Φ5+2Φ6)も候補になる。 差を取ると 4(Ф2+Ф4-Ф5-Ф6) が得られる。

Τ₁₁では入替を考慮すると8(Φ2-Φ4)、8(Φ5-Φ6)が得られる。

O_bの群軌道が得られる。

