多核NMR①: 測定しやすい核としにくい核

多核NMR:

有機分析化学第8回(2022/12/05)

(核の種類による)検出感度(同じ濃度の時)

$$S = I(I+1)\nu_0^3 N$$

Ⅰ: 核スピン

 ν_0 : 共鳴周波数

N: 核スピン濃度

相対感度(13C核を基準)

$$R' = \left[\frac{I(I+1)}{\frac{1}{2}(\frac{1}{2}+1)} \right] \times \left[\frac{\nu_0}{\nu_{13C}} \right]^3$$

総合相対感度

(天然存在比も考慮して¹³C核を基準)

$$R' = \left[\frac{I(I+1)}{\frac{1}{2}(\frac{1}{2}+1)} \right] \times \left[\frac{\nu_0}{\nu_{13C}} \right]^3 \times \left[\frac{\alpha_0}{\alpha_{13C}} \right]$$

線幅因子 (line width factor)

$$LW = \begin{array}{c} \dfrac{(2I+3)Q^2}{I^2(2I-1)} & I:$$
 核スピン $Q:$ 核四極子モーメント

よく利用される/=1/2の核

¹⁵N (0.37%), ¹⁹F (100%), ²⁹Si (4.7%), ³¹P (100%) ⁷⁷Se (7.58%), ¹¹¹Cd (12.75%), ¹¹⁹Sn (8.58%) ¹²⁵Te (6.99%), ¹⁹⁵Pt (33.8%), ²⁰⁷Pb (22.6%)

よく利用される/=1/2以外の核

²H (
$$I = 1, 0.015\%$$
), ⁷Li ($I = 3/2, 92.6\%$)
¹¹B ($I = 3/2, 81.2\%$), ¹⁴N ($I = 1, 99.6\%$)
¹⁷O ($I = 5/2, 0.037\%$)

他の核とのカップリングがよく利用される核

¹⁰³Rh (
$$I = -1/2$$
, 100%)
¹⁰⁷Ag ($I = -1/2$, 51.82%), ¹⁰⁹Ag ($I = -1/2$, 48.18%)

三共出版「多核種の溶液および固体NMR」

北川 進, 水野 元博, 前川 雅彦 著、竹内敬人・西川 実希 訳

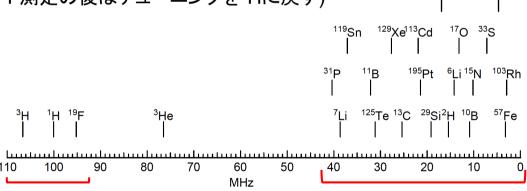
ISBN: 9784782705681

多核NMR②: それぞれの核の共鳴周波数と化学シフト

共鳴周波数は核ごとに決まっている

電磁波のエネルギーΔE = hvとすると

$$v = \frac{\gamma \cdot \boldsymbol{B_0}}{2\pi}$$


測定前に行うオートチューニングは この共鳴周波数を調整する作業

それぞれの核における共鳴周波数(1Hを100 MHzとしたとき)

http://www.chem.wisc.edu/areas/reich/nmr/notes-7-multi.pdf

1H = 100 MHz

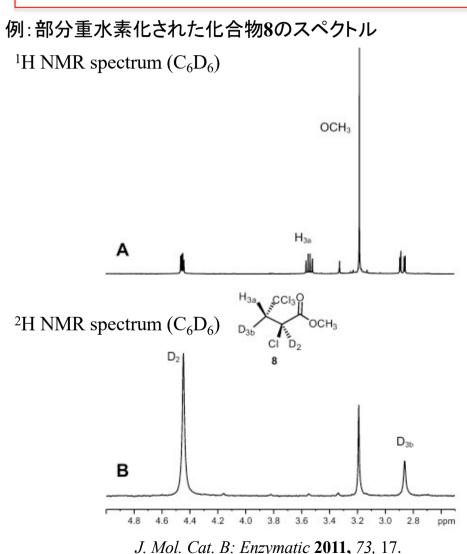
通常は高周波数の核を1Hに固定して測定 低周波数側をいろいろ設定することが多い (=19F測定の後はチューニングを1Hに戻す)

共鳴周波数の高い核 = high frequency核 共鳴周波数の低い核 = low frequency核

¹⁷¹Yb

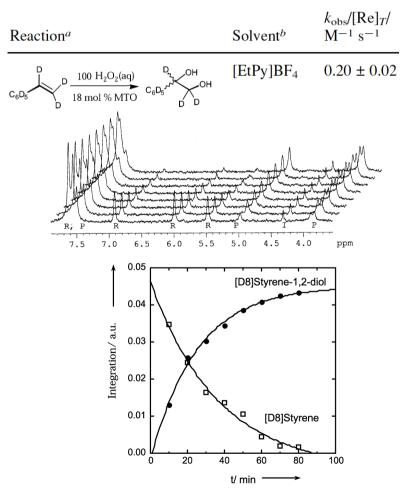
化学シフト幅は核ごとに異なる

$$^{1}H \sim 15 \text{ ppm}$$
 $^{13}C \sim 200 \text{ ppm}$


$$^{11}\text{B} \sim 210 \text{ ppm}$$

 $^{31}\text{P} \sim 450 \text{ ppm}$
 $^{77}\text{Se} \sim 3000 \text{ ppm}$
 $^{195}\text{Pt} \sim 6700 \text{ ppm}$
 $^{59}\text{Co} \sim 18000 \text{ ppm}$

化学シフト範囲の広い核は 測定幅を変えながら シグナルを見つける必要がある (折り返しに注意すること)


多核NMR各論: 2H NMRスペクトル

 2 H, 核スピンI=1, 天然存在比0.015%, 磁気回転比 $\gamma=4.1066$ 四極子モーメント= 2.8×10^{-3} , 相対総合感度= 1.45×10^{-6}

化学シフト基準はSi(CD₃)₄ = 0

応用例: styrene-d₈のMeReO₃を用いた 触媒的ジヒドロキシ化反応速度測定

Fig. 1 [D₈]Styrene dihydroxylation, 0.5 M H₂O₂. *Chem. Commun.* **2002**, 66.

多核NMR各論: 7Li, 6Li NMRスペクトル

 7 Li, 核スピンI = 3/2, 天然存在比92.6%, 磁気回転比 $\gamma = 10.396$ 四極子モーメント = -4×10^{-2} , 相対総合感度 = 1.54×10^{3}

化学シフト基準はLiCl/D₂O = 0 範囲は約-10~5 ppm

Temp / ° C

- 67

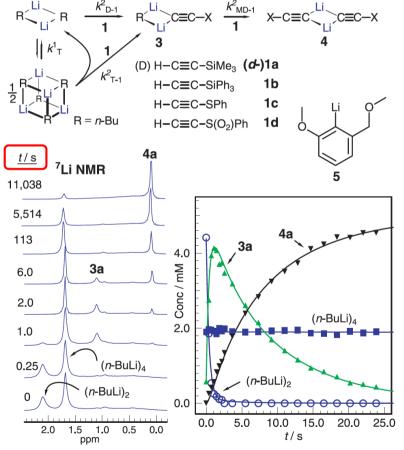
- 84

- 90

- 95

- 111

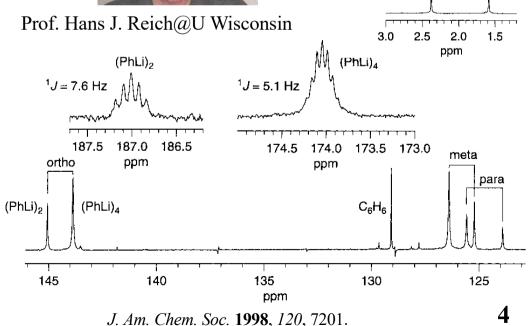
(PhLi)₄


⁶Li

(PhLi)₂

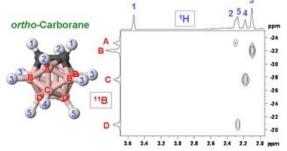
 6 Li, 核スピンI=1, 天然存在比7.4%, 磁気回転比 $\gamma=3.937$

四極子モーメント = -8×10^{-4} , 相対総合感度 = 3.58

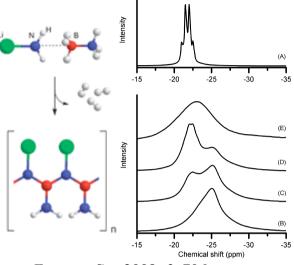

7Li応用例: MeaSiアセチレンの脱プロトン化を RI(rapid injection)NMR法で迅速モニター

J. Am. Chem. Soc. 2007, 129, 3492.

6Li応用例: (Ph⁶Li)っと(Ph⁶Li)₄の 平衡をEt₂O溶媒中低温の⁶Liおよび 13C NMRスペクトルで観測



多核NMR各論: ¹¹B NMRスペクトル


 11 B, 核スピンI=3/2, 天然存在比80.42%, 磁気回転比 $\gamma=8.5847$ 四極子モーメント= 4.1×10^{-2} , 相対総合感度= 7.52×10^{2}

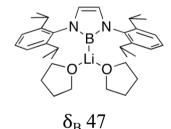
例:BBr₃: 38.5 ppm, BBr₃·pyridine: -7.1 ppm 他の核とのカップリングは3配位>4配位

ホウ素クラスターでは二次元¹¹B NMRが有用

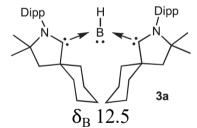
化学シフト基準はBF₃·OEt₂ = 0 範囲は約–120~90 ppm

Energy Environ. Sci. 2009, 2, 706.

特殊な環境の¹¹B核を含む化合物


反応を追跡

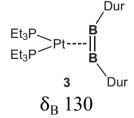
固体¹¹B NMRで


水素吸蔵合金の

$$\begin{array}{c} \text{Dip} & \text{Dip} \\ \text{N} & \textbf{B} \equiv \textbf{B} \longrightarrow \begin{pmatrix} N \\ N \\ \end{pmatrix} \\ \text{Dip} & \text{Dip} \\ \delta_B \ 39 \end{array}$$

Science 2012, 336, 1420.

Science 2006, 314, 113.

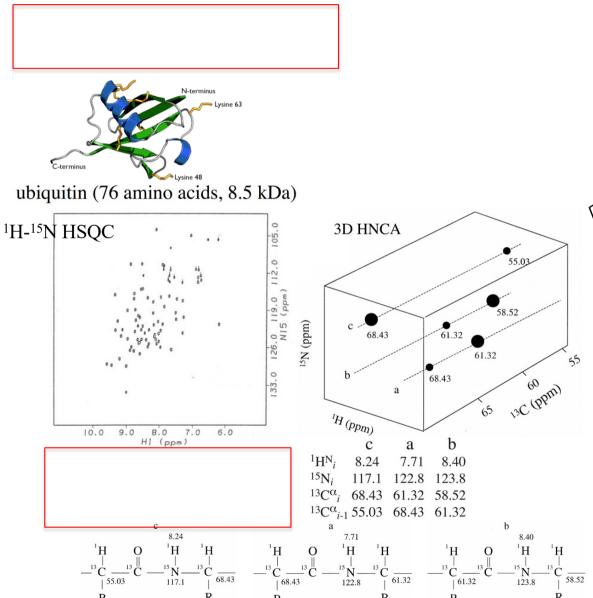


Science 2011, 333, 610.

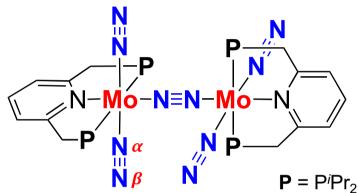
PCy₃

$$\mid$$
PhS—Pt—B \equiv 0
 \mid
PCy₃
 $\delta_{\rm B}$ 17

Science 2010, 328, 345.



Nat. Chem. 2013, 5, 115.


多核NMR各論: 15N NMRスペクトル

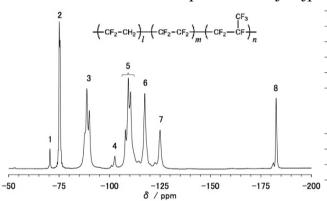
15N, 核スピンI = -1/2, 天然存在比0.37%, 磁気回転比γ = -2.716 四極子モーメント = なし, 相対総合感度 = 2.19 × 10-2

化学シフト基準はCH₃NO₂ = 0 範囲は約-600~600 ppm

最近の応用例:窒素分子錯体の同定

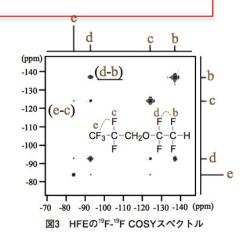
 $\delta_{\rm N}$ -29.0 (dt, ${}^{1}J_{\rm NN}$ & ${}^{2}J_{\rm PN}$ = 6.1&2.4 Hz, terminal N α) $\delta_{\rm N}$ -16.5 (d, ${}^{1}J_{\rm NN}$ = 6.1 Hz, terminal N β) $\delta_{\rm N}$ 8.5 (s, bridging N)

Nat. Chem. 2011, 3, 120.


多核NMR各論: 19F NMRスペクトル

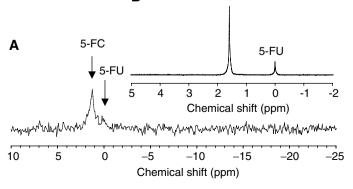
 19 F, 核スピンI = 1/2, 天然存在比100%, 磁気回転比 $\gamma = 25.1815$ 四極子モーメント = なし, 相対総合感度 = 4.73×10^3

化学シフト基準はCFCl₃ = 0 範囲は約-300~900 ppm


使用例:含フッ素ポリマーの構造解析

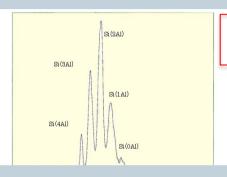
http://www.cerij.or.jp/


シグナル	帰属結果
1	-CH ₂ -CF ₂ -CF(CF ₃)-CF ₂ -CH ₂ -
2	-CF ₂ -CF ₂ -CF(CF ₃)-CH ₂ -CF ₂ -
3	-CF ₂ -CH ₂ -CF ₂ -CH ₂ -CF ₂ -
4	-CF ₂ -CH ₂ -CF ₂ -CF(CF ₃)-CF ₂ -
	-CF ₂ -CH ₂ -CF ₂ -CF ₂ -CF(CF ₃)-
5	-CF ₂ -CH ₂ -CF ₂ -CF ₂ -CH ₂ -
	-CH ₂ -CF ₂ -CF ₂ -CH ₂ -CH ₂ -
6	-CH ₂ -CF ₂ -CF ₂ -CF(CF ₃)-CH ₂ -
7	-CF ₂ -CF(CF ₃)-CF ₂ -CF ₂ -CF(CF ₃)-
8	-CF ₂ -CF ₂ -CF(CF ₃)-CH ₂ -CF ₂ -


二次元¹⁹F NMR:

http://www.toray-research.co.jp/new bunseki/index.html

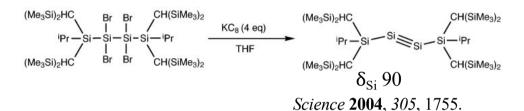
最近の応用例:ネズミの腫瘍に F-cytosineを注射、そのままF-uracilを検出

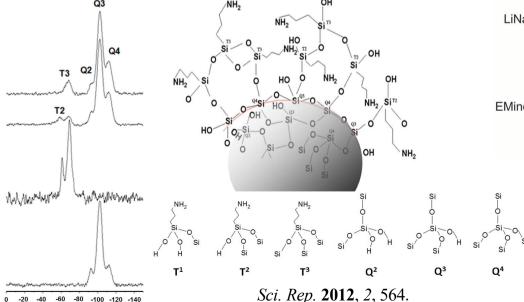

Brit. J. Cancer 2003, 89, 1796.

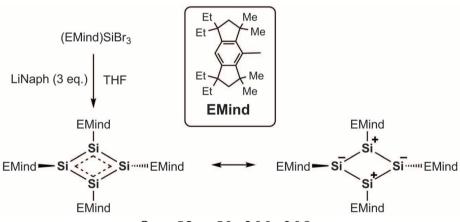
多核NMR各論: 29Si NMRスペクトル

 29 Si, 核スピンI = -1/2, 天然存在比4.7%, 磁気回転比 $\gamma = -5.3190$ 四極子モーメント = なし, 相対総合感度 = 4.95×10^{-1}

化学シフト基準はSiMe₄ = 0 範囲は約-200~100 ppm




ppm


http://www.ube-ind.co.jp/usal/documents/o224_145.htm

最近の例:特殊な環境の29Si核を含む化合物

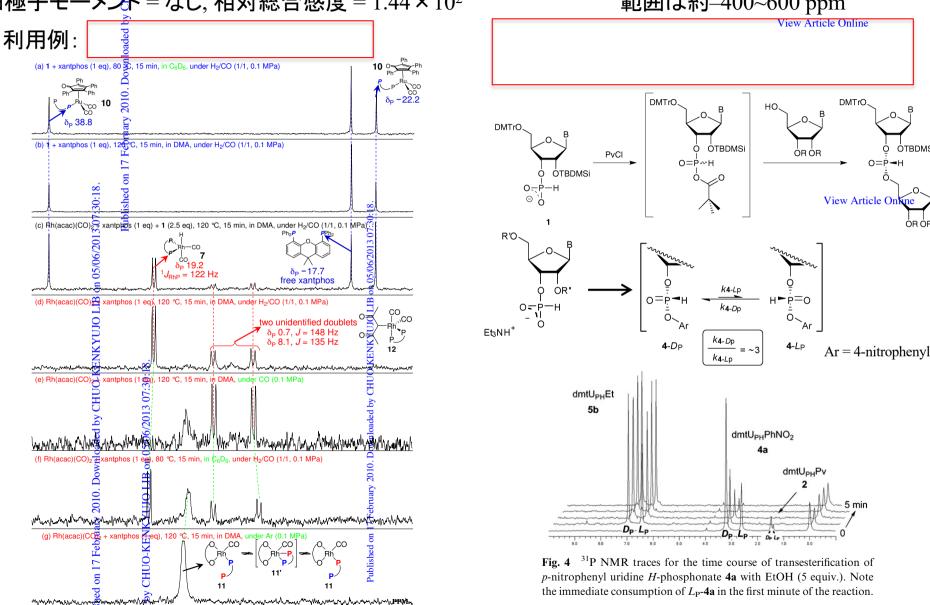
使用例:ビーズ表面に形成した シロキサンの状態分析

 $\delta_{\rm Si}$ -52, -50, 300, 308

Science 2011, 331, 1306.

多核NMR各論:31P NMRスペクトル

³¹P, 核スピン/ ² 1/2, 天然存在比100%, 磁気回転比γ = 10.8394


四極子モーメント = なし、相対総合感度 = 1.44×10²

Angew. Chem. Int. Ed. 2010, 49, 4488.

化学シフト基準は85%H₃PO₄ = 0 範囲は約-400~600 ppm

DMTrO

ÖTBDMSi

View Article Onlin