多核NMR①:測定しやすい核としにくい核 有機化学4

多核NMR:一般に¹Hおよび¹³C以外の核のNMR 最も良い点は「見たいものだけが見える」

(核の種類による)検出感度(同じ濃度の時)

S = /(/+1)v₀³N /: 核スピン v₀:共鳴周波数 N:核スピン濃度

相対感度(¹³C核を基準)

総合相対感度 (天然存在比も考慮して¹³C核を基準)

いずれの値も大きな方が測定しやすい (INEPT法による感度向上も有効)

線幅因子 (line width factor)

 $LW = \frac{(2l+3)Q^2}{l^2(2l-1)} \quad l: 核スピン \\ Q: 核四極子モーメント$ 小さい値となる方が測定しやすい

よく利用される/=1/2の核

¹⁵N (0.37%), ¹⁹F (100%), ²⁹Si (4.7%), ³¹P (100%)
⁷⁷Se (7.58%), ¹¹¹Cd (12.75%), ¹¹⁹Sn (8.58%)
¹²⁵Te (6.99%), ¹⁹⁵Pt (33.8%), ²⁰⁷Pb (22.6%)

よく利用される*I=1/2*以外の核

²H (*I* = 1, 0.015%), ⁷Li (*I* = 3/2, 92.6%) ¹¹B (*I* = 3/2, 81.2%), ¹⁴N (*I* = 1, 99.6%) ¹⁷O (*I* = 5/2, 0.037%)

他の核とのカップリングがよく利用される核

¹⁰³Rh (*I* = -1/2, 100%) ¹⁰⁷Ag (*I* = -1/2, 51.82%), ¹⁰⁹Ag (*I* = -1/2, 48.18%)

三共出版「多核種の溶液および固体NMR」
 北川進,水野元博,前川雅彦 著、竹内敬人・西川 実希 訳
 ISBN: 9784782705681
 核スピンや感度、それぞれの核の基準物質などのデータが多数掲載

1

第8回(2013/06/06)

多核NMR②:それぞれの核の共鳴周波数と化学シフト

化学シフト幅は核ごとに異なる

¹H ~ 15 ppm ¹³C ~ 200 ppm

¹¹B ~ 210 ppm
³¹P ~ 450 ppm
⁷⁷Se ~ 3000 ppm
¹⁹⁵Pt ~ 6700 ppm
⁵⁹Co ~ 18000 ppm

化学シフト範囲の広い核は 測定幅を変えながら シグナルを見つける必要がある (折り返しに注意すること)

多核NMR各論:²H NMRスペクトル

²H, 核スピン/=1, 天然存在比0.015%, 磁気回転比 γ =4.1066 四極子モーメント=2.8×10⁻³, 相対総合感度=1.45×10⁻⁶ 化学シフト基準はSi(CD₃)₄=0

化学シフト範囲や化学シフトは主に¹H NMRスペクトルと同様だが

シグナルが幅広になる=感度が低い

例:部分重水素化された化合物8のスペクトル

¹H NMR spectrum (C_6D_6)

応用例:styrene-*d*₈のMeReO₃を用いた 触媒的ジヒドロキシ化反応速度測定

Chem. Commun. **2002,** 66.

多核NMR各論:⁷Li,⁶Li NMRスペクトル

多核NMR各論:¹¹B NMRスペクトル

¹¹B,核スピンI=3/2,天然存在比80.42%,磁気回転比γ=8.5847 化学シフト基準はBF₃·OEt₂=0 四極子モーメント = 4.1×10⁻², 相対総合感度 = 7.52×10² 範囲は約-120~90 ppm

Dip

Dip

配位数により化学シフトが大きく異なる 3配位(0~90 ppm) vs. 4配位(-120~10 ppm) 例:BBr₃: 38.5 ppm, BBr₃·pyridine: -7.1 ppm 他の核とのカップリングは3配位>4配位

ホウ素クラスターでは二次元¹¹B NMRが有用

http://u-of-o-nmr-facility.blogspot.jp/2008/04/11-b-cosy.html http://u-of-o-nmr-facility.blogspot.jp/2008/04/1-h-11-b-hmqc.html

Science 2010, 328, 345. Nat. Chem. 2013, 5, 115. 5

3

δ_B 130

Dur

PhS-Pt-B=O

PCy₃

δ_P 17

多核NMR各論:¹⁵N NMRスペクトル

¹⁵N, 核スピン/ = -1/2, 天然存在比0.37%, 磁気回転比 γ = -2.716 化学シフト基準はCH₃NO₂ = 0 四極子モーメント = なし, 相対総合感度 = 2.19×10⁻² 範囲は約-600~600 ppm

多核NMR各論:¹⁹F NMRスペクトル

¹⁹N, 核スピン/=1/2, 天然存在比100%, 磁気回転比γ=25.1815 化学シフト基準はCFCl₃=0 四極子モーメント=なし, 相対総合感度=4.73×10³ 範囲は約–300~900 ppm

全ての核の中で¹Hに次いで高感度

多核NMR各論:²⁹Si NMRスペクトル

²⁹Si, 核スピン/=-1/2, 天然存在比4.7%, 磁気回転比γ=-5.3190 化学シフト基準はSiMe₄=0 四極子モーメント=なし, 相対総合感度=4.95×10⁻¹ 範囲は約-200~100 ppm

使用例:固体²⁹Si NMRによる Al,Si含有ゼオライトの分析

多核NMR各論:³¹P NMRスペクトル

³¹P, 核スピン/ = 1/2, 天然存在比100%, 磁気回転比 γ = 10.8394 化学シフト基準は85% $H_3PO_4 = 0$ 四極子モーメント = なし, 相対総合感度 = 1.44×10² 範囲は約–400~600 ppm

H-ホスホネート法を用いる人工核酸合成 における反応追跡

Fig. 4 ³¹P NMR traces for the time course of transesterification of *p*-nitrophenyl uridine *H*-phosphonate **4a** with EtOH (5 equiv.). Note the immediate consumption of $L_{\rm P}$ -**4a** in the first minute of the reaction.

New J. Chem. 2010, 34, 854.