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タイトルとTOCグラフィックから読み取れること 

・水素移動反応の話 

・典型元素の酸化還元を利用した触媒 
・リン原子が可逆的に3価と5価になる 

Abstract: A planar, trivalent phosphorus compound is shown to undergo 
reversible two-electron redox cycling (PIII/PV) enabling its use as catalyst 
for a transfer hydrogenation reaction. The trivalent phosphorus compound 
activates ammonia-borane to furnish a 10-P-5 dihydridophosphorane, 
which in turn is shown to transfer hydrogen cleanly to azobenzene, 
yielding diphenylhydrazine and regenerating the initial trivalent 
phosphorus species. This result constitutes a rare example of two-
electron redox catalysis at a main group compound and suggests broader 
potential for this nonmetal platform to support bond-modifying redox 
catalysis of the type dominated by transition metal catalysts. 

Abstractから読み取れること 
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・アンモニアボランが活性化されて10-P-5という化学種ができる 
・アゾベンゼンが水素化されてヒドラジンになる 
・非金属系で2電子の酸化還元は珍しく、応用の可能性は広い 
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Born of frustration : Sterically encumbered
Lewis acid and Lewis base combinations
do not form “classical” Lewis acid/base
adducts. Rather, the unquenched Lewis
acidity and basicity of such sterically
“frustrated Lewis pairs (FLPs)” is avail-
able to heterolytically activate hydrogen
(see picture) and can be subsequently
utilized for hydrogenation catalysis. FLPs
also react with a variety of other small
molecules.

A periodic dependence on the Au segment
length is observed for the electric field at
the nanogap of long-segment Au nano-
structures. An optimized geometry of
these platforms leads to an intense sur-
face-enhanced Raman scattering (SERS)
signal at the nanogap (see picture).
Information about molecular transport
and vibrational spectra may therefore be
simultaneously obtained.

For V’s a jolly good fellow: A one-pot
reaction of aniline derivatives with VO-
(OiPr)3 in the presence of NaH affords
either trinuclear arylimidovanadium(V)
triisopropoxide with a tridendritic centro-
symmetric structure (see picture, left) or
axially chiral binuclear arylimidovana-
dium(V) triisopropoxide (right), wherein
self-assembly creates a highly ordered
molecular arrangement in the solid state.

Micro sandwiches : The new technique of
hydrodynamic focusing lithography (HFL)
utilizes stacked microfluidic flows for
polymer microparticle synthesis. The
method can improve the throughput of
flow lithography for multifunctional par-
ticles and produce more complex chemi-
cally patterned particles (see examples).
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trans-bent structure (Ar*, C6H3-2,6(C6H2-2,4,6-i-Pr3)2; i-Pr,
CH(CH3)2). Also, there are formally double-bonded species such
as the green Ar9GaGaAr9, which dissociates in solution to :GaAr9
monomers, which have donor and acceptor sites34 (Ar9, C6H3-
2,6(C6H3-2,6-i-Pr2)2). In contrast, the heavier group 15 element
multiple bonded compounds, exemplified by Yoshifuji’s landmark
diphosphene Mes!€PP~€PPMes! (Mes*5 C6H2-2,4,6-t-Bu3) (ref. 35;
t-Bu, C(CH3)3), have a conventional double bond with s- and p-
components due to p-orbital overlaps and lone pairs that are mainly s
in character. These compounds have no non-Kekulé character, and
their chemistry more resembles that of unsaturated organic com-
pounds. The heaviest element derivatives R €MM~ €MMR (M 5 Sb or Bi)
have bond shortenings of 8–9%, which show that p-bonding is main-
tained in the higher rows of the p-block elements36.

Reactivity of heavier main-group compounds
Reactions with saturated small molecules. In the previous section, it
was argued that the multiple bonded heavier main-group compounds
resemble transition-metal complexes owing to the presence of occu-
pied and unoccupied frontier orbitals that are energetically accessible.
How is this reflected in the chemistry of the main-group species? In
organotransition-metal chemistry, the most important or basic reac-
tion types are oxidative additions, reductive eliminations and inser-
tions. Most steps in homogenous catalytic cycles involve one or more
of these reactions—usually with small molecules, such as hydrogen,
olefins, carbon monoxide, ammonia and related molecules—under
mild conditions. Until recently, no comparable reactions with main-
group molecules were known. However, many such reactions have
been recently discovered for the multiple bonded/unsaturated main-
group compounds.

The simplest of these reactions involve the addition of an H2 mole-
cule, which is analogous to a key step in many homogeneous transition-
metal catalytic cycles such as olefin, alkyne or arene hydrogenation and
hydroformylation. In several instances, the addition is reversible and,
in a defining event in the development of coordination chemistry,
Kubas showed that it was even possible to isolate transition-metal com-
plexes of H2 itself, which represent the initial stage of an oxidative
addition reaction37. Until recently, no H2 additions were known for
main-group compounds under mild conditions. However, in 2005 it
was shown that the Ge alkyne analogue Ar9GeGeAr9 reacted directly
with H2 under ambient conditions to give the hydrogenated products
Ar9(H)GeGe(H)Ar9, Ar9(H)2GeGe(H)2Ar9 and Ge(H)3Ar9; these were
all structurally characterized by X-ray crystallography38. Calculations
indicate that in this reaction and that of its Sn analogue Ar9SnSnAr9
(which reacts to give Ar9Sn(m-H)2SnAr9 exclusively) the initial step
involves a synergic interaction of frontier orbitals with H2 (Fig. 2)39.

The interaction involves donation from the s-orbital of H2 into
the LUMO of Ar9GeGeAr9, which is a symmetric unoccupied n1

non-bonding combination (compare Fig. 1e). There is a synergic
electron donation from the p-HOMO orbital of the germanium
species into the s*-orbital of H2. This weakens the H–H bond suffi-
ciently to enable oxidative addition to occur. Clearly, the mechanism
whereby H2 is activated by the main-group and transition-metal
compounds is analogous in the symmetry of the frontier orbitals

and their energy separations. The main difference lies in the orbital
labels. This type of activation by main-group species is general, as
shown by the fact that several other unsaturated heavier main-group
molecules, including the carbene-like :GeAr2 and :SnAr2 as well as the
monovalent :GaAr species, have been recently shown to react directly
with H2 (Fig. 3a and b)39,40.

Bertrand and his group showed in 2007 that the reaction of the
related stable carbenes such as :C(t-Bu)Ni-Pr2 with H2 (Fig. 3c)
affords the addition product H2C(t-Bu)Ni-Pr2 (ref. 41), in contrast
to the reaction with the heavier tin carbene analogue (Fig. 3a), which
leads to arene elimination (i-Pr, CH(CH3)2). All of the products were
characterized spectroscopically and by X-ray crystallography.

In another major advance, Stephan and co-workers showed that
H2 can be bound in a reversible manner by the use of a Lewis-acid–
base strategy, termed ‘frustrated Lewis pairs’, and incorporated in
phosphine boranes (Fig. 3d)42. The important feature of the reaction
is the steric prevention of the formation of a stable Lewis acid–base
phosphine–borane adduct by the large phosphine substituents
(hence the term frustrated Lewis pair) while permitting the synergic
interaction of the empty borane 2p orbital and the phosphine lone
pair orbital with the H2 molecule. In effect, there is an available
unfilled acceptor orbital (on boron) and a donor orbital (phosphorus
electron pair) that can fulfil a similar function to the frontier orbitals
on transition metals and unsaturated, multiple bonded main-group
compounds. The initial step is very likely to be the side-on reaction of
the s-bond of H2 with the borane, with population of the H2 s*-
orbital by electron density from the phosphine. In other words, the
activation of H2 proceeds by a similar initial orbital interaction to
those described above, although the ultimate disposition of H2 differs
in that it is polar-H1 at phosphorus and H2 at boron. Mild heating of
the resulting phosphonium borate releases H2 to regenerate the phos-
phine and borane. Recent work has extended the list of H2 frustrated
Lewis pair activation systems to include borane complexes of car-
benes43,44, amines45 and phosphines46,47. It seems very likely that other
combinations of donor/acceptor species derived from various main-
group elements will also be developed.

In addition to the activation of H2, Bertrand and co-workers also
showed that carbenes react with NH3 at 278 uC to afford N–H activa-
tion products (Fig. 3e)41. This was the first instance of the insertion of
a main-group element into the N–H bond of ammonia under mild,
uncatalysed conditions. The heavier germanium and tin carbene
analogues :GeAr2 and :SnAr2 as well as the gallium species :GaAr were
also shown insert into N–H bonds below room temperature40,48.
These reactions parallel those in transition metals where, for
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Figure 2 | Similarity of H2 interactions with main-group and transition-
metal compounds. a, The initial interaction of H2 with the p (HOMO) and
n1 (LUMO) frontier orbitals of ArMMAr (M 5 Ge or Sn; Ar9 5 C6H3-
2,6(C6H3-2,6-i-Pr2)2), which lie only ,2 eV apart. This is comparable to
b, the interaction of H2 with the frontier d orbitals in a transition-metal
complex (M is a transition metal).

2 :SnAr2 + 2H2 ArSn(μ-H)2SnAr + 2ArHa

2 :GaAr + 2H2 Ar(H)Ga(μ-H)2Ga(H)Arb

:C(t-Bu)Ni-Pr2 + H2 H2C(t-Bu)Ni-Pr2c

B(C6F3)3 + PR3 [R3PH][HB(C6F3)3]
H2

25 °C

:C(t-Bu)Ni-Pr2 + NH3

H

H2N Ni-Pr2

C

t-Bu

e

Ir

Pt-Bu2

Pt-Bu2

Me NH3, 25 °C

<5 min

Pt-Bu2

Pt-Bu2

MeH

NH2

+

f

Ir

d

Figure 3 | The reactions of various main-group and transition-metal
species with H2 or NH3. Ar 5 C6H3-2,6(C6H2-2,4,6-Me3)2 or C6H3-2,6-
(C6H3-2,6-i-Pr2)2.
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Ligand- Coupling Reactions of Hypervalent Species 
Scheme IX 
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shown by the three typical reactions shown in eqs 
19-21.44 Since the perfluoroalkyl group is highly 

I SAr CI 
Me 

RF : Perllwroalkyl group 

RF-I-OSO~H + phcH&QX - RF-CH,Ph (20) 

RF-I-OTS + PhOH - (21) 

electronegative [i.e., the electronegativity of the RF 
group is 3.45,& between that of C1 (3.0) and F (4.0)], a 
direct SN2-type nucleophilic attack on the RF group 
may not give any substitution product. However, be- 
cause of the highly electron withdrawing effect of the 
RF group, most nucleophiles can attack the central 
iodine atom to form transient iodine-centered hyper- 
valent intermediates, which in a subsequent step readily 
undergo ligand coupling. Here again, there has been 
no stereochemical investigation to substantiate the 
mechanistic argument. 

The reaction shown in eq 22 to form a-(trifluoro- 
methy1)sulfonoxy ketones (a-keto triflates) is another 
typical example of ligand coupling.46 

Ph 

- 
Ph 

I 
OTMS 1 I 1 OTMS 

-78% 

H I  
CeH5 1 L 

The substitution reactions shown in eqs 23 and 24 
were found to be stereospecific and proceeded with 
retention of the trans configuration of the double bond. 
Ochiai proposed a reaction pathway involving the initial 
addition of the cuprate, ligand coupling on the iodine 
atom, and also ligand coupling on the copper.47 

Among many other examples, the oxidation of sub- 
stituted thioanisoles with (diacetoxyiod0)benzene may 
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(24) - PhZCuLi 
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-I-Ph M F . .  30°C 
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be cited (eq 25). In this reaction, the rates were found 
to be correlated with the Hammett B values, giving a 
p value of -0.8>48 the rate being slower with bulky 
alkyl-substituted phenyl sulfides. 

Ar-&-Me I + PhlOAc 

J 

0 
- 4  (25) 

Recently, the reaction shown in eq 26 was found to 
give methyl p-tolyl sulfoxide in nearly optically pure 
form, due to the optically active nature of the starting 

This also involves a typical ligand coupling, 
with initial nucleophilic attack of the sulfide on the 
hypervalent iodine atom. 

Ar-S-Me + PhI + PC9 

I 

Central Copper Atom 
As was suggested earlier>l' many reactions involving 

organic copper reagents, such as the Ullman type re- 
actionsw and those involving the Gilman reagent: may 
proceed through ligand coupling. These reactions are 
highly stereoselective. A typical example of the Ullman 
type reaction was carried out by Cohen and Poeth, who 
showed the reaction to proceed with over 96% retention 
of the geometric configuration, as shown in eq 27.50 

cu,  100°C - y* (27) 
H Y  

H Y  
Y = C02Et 96% 

One example of the use of a Gilman reagent is the 
formation of optically active 2-phenyloctane in the 
treatment of optically active 2-octyl p-tosylate with 
lithium diphenyl~uprate,~' though octyl bromide be- 
haved somewhat different l~.~~ Many similar reactions 
have been carried out with Gilman and all 
have been found to be stereoselective. The reaction 
obviously involves an initial SN2 and the 
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John Wiley & Sons: New York, London, Sydney, and Toronto, 1972; pp 
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Johnson, C. R.; Dutra, G. A. J. Am. Chem. SOC. 1973,95,7777. Hebert, 
E. Tetrahedron Lett. 1982,23,415. 

1982, 47, 428. 

Ref 13 

Chemistry of Hypervalent Compounds; 
Wiley VCH: New York, 1999. 

Ref 14 

Ligand Coupling Reactions 
with Heteroatomic Compounds; 

Elsevier: Oxford; 1998. 



Introduction 2: 典型元素の酸化還元や触媒利用 
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Science 2007, 316, 439. 

tuned by modifying the nature of the substitu-
ents, as shown by the differing reactivities of
mono(amino)carbenes and diaminocarbenes
with H2 and NH3. Moreover, the nucleophilic
activation of NH3, under very mild conditions,
offers an alternative paradigm in the continuing
search for catalytic systems capable of trans-
forming ammonia efficiently into useful amino
compounds.
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Fig. 3. (A) (Alkyl)(amino)carbenes 1 and 2 split ammonia at subzero temperatures. (B) Bond
distances (Å) and charges (in parentheses) for the transition state of the reaction of NH3 with
carbene 2′, calculated at the B3LYP/6-311 g** level of theory.

Fig. 4. Model carbenes used for the
calculated values shown in Table 1.

Fig. 2. (A) Under mild conditions, (alkyl)(amino)carbenes 1 and 2
activate H2, whereas (diamino)carbenes 3 and 4 are inert. (B) Some
structures along the reaction pathway of the insertion of carbene 2′ into

H2, calculated at the B3LYP/6-311 g** level of theory. Bond distances (Å)
and charges (in parentheses) are given in the structure drawings, and
relative energies are shown in the reaction coordinate diagram.
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pentane trituration of the crude reaction residue. Alternatively,
the action of sodium cyanoborohydride on dichlorophosphor-
ane 2 gives the same species in 59% isolated yield, which we
assign as dihydridophosphorane 3 (Scheme 1).27,28 The

magnitude and multiplicity of the 31P NMR resonance are
indicative of 1JPH coupling of the phosphorus center with bound
hydrogen nuclei of an apparently equivalent pair (i.e., a −P(H)2
unit, vide infra) and longer range 3JPH coupling to the remote
vinylic hydrogen nuclei. The complementary coupling securing
these assignments is evident in the 1H NMR spectrum (Figure
2, top); phosphorus-coupled doublets are observed at δ 7.95
ppm (1JPH = 670 Hz) and δ 5.83 ppm (3JPH = 34 Hz).
X-ray diffraction of a colorless single crystal obtained by

sublimation of 3 in vacuo at 35 °C affords additional structural
detail. The structure of 3 is found to deviate, albeit modestly,
from an idealized 10-P-5 trigonal bipyramid toward a distorted
square pyramid about phosphorus (Figure 3). The phosphorus
center resides in a plane defined by the nitrogen atom and the
two P−H hydrogen atoms. The positions of the P−H
hydrogens, both of which were located on the difference
Fourier map, are splayed obliquely with respect to the O,N,O-
supporting structure and are crystallographically inequivalent
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bimolecular reaction.
The combined reactivities of 1 as hydrogen acceptor from

ammonia-borane and 3 as hydrogen donor to an organic
substrate suggested the possibility of employing this
phosphorus platform as a redox catalyst for transfer hydro-
genation. The direct reaction of azobenzene with a 4-fold excess
of ammonia-borane in acetonitrile solution at 80 °C proceeds
only to minimal conversion (ca. 5%) after 24 h (Table 1, entry
1). However, the addition of 10 mol % of 1 yields
diphenylhydrazine in 80% yield in the same time frame
(entry 2), even under less forcing conditions (40 °C). Longer
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Presumably, under these conditions, three-coordinate 1 accepts
hydrogen from ammonia-borane forming dihydridophosphor-
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Figure 2. (Top) Abridged 1H NMR spectrum for 3 in CDCl3. An
additional 1H signal for −C(CH3)3 is found at δ 1.06 ppm. (Bottom)
Annotated 31P NMR spectrum for 3 in CDCl3. Units are ppm relative
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Figure 3. (Left) Thermal ellipsoid plot (50%) of 3. Hydrogen atoms
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sublimation of 3 in vacuo at 35 °C affords additional structural
detail. The structure of 3 is found to deviate, albeit modestly,
from an idealized 10-P-5 trigonal bipyramid toward a distorted
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center resides in a plane defined by the nitrogen atom and the
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hydrogens, both of which were located on the difference
Fourier map, are splayed obliquely with respect to the O,N,O-
supporting structure and are crystallographically inequivalent
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mechanistic description awaits further study, the sign and
magnitude of the entropy of activation are consistent with a
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substrate suggested the possibility of employing this
phosphorus platform as a redox catalyst for transfer hydro-
genation. The direct reaction of azobenzene with a 4-fold excess
of ammonia-borane in acetonitrile solution at 80 °C proceeds
only to minimal conversion (ca. 5%) after 24 h (Table 1, entry
1). However, the addition of 10 mol % of 1 yields
diphenylhydrazine in 80% yield in the same time frame
(entry 2), even under less forcing conditions (40 °C). Longer
reactions times lead to modestly increased yields (entry 3).
Presumably, under these conditions, three-coordinate 1 accepts
hydrogen from ammonia-borane forming dihydridophosphor-
ane 3, then subsequent hydrogen transfer to azobenzene
regenerates 1 and closes the catalytic cycle. Consistent with this
scheme, the use of a catalytic amount of 3 also promotes
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additional 1H signal for −C(CH3)3 is found at δ 1.06 ppm. (Bottom)
Annotated 31P NMR spectrum for 3 in CDCl3. Units are ppm relative
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Scheme 1. Preparation of Dihydridophosphorane 3

Figure 3. (Left) Thermal ellipsoid plot (50%) of 3. Hydrogen atoms
on carbon omitted for clarity. Selected bond distances (Å) and angles
(deg): P(1)−N(1) = 1.676(2); P(1)−O(1) = 1.721(1); P(1)−O(2) =
1.699(1); P(1)−H(1) = 1.29(2); P(1)−H(2) = 1.31(2); O(1)−
P(1)−O(2) = 170.5(1); N(1)−P(1)−H(1) = 134.8(1); N(1)−P(1)−
H(2) = 116.1(1); H(1)−P(1)−H(2) = 109.1(2). (Right) Schematic
illustrating bond angles.

Journal of the American Chemical Society Communication

dx.doi.org/10.1021/ja302963p | J. Am. Chem. Soc. 2012, 134, 11330−1133311331

δH 7.95 ppm (d) 
1JPH = 670 MHz 

H 

H 

δH 5.83 ppm (d) 
3JPH = 34 MHz 

δP –43.7 ppm (tt) 
1JPH = 670 MHz 
3JPH = 34 MHz 

1H NMR (CDCl3) 

31P NMR (CDCl3) 

pentane trituration of the crude reaction residue. Alternatively,
the action of sodium cyanoborohydride on dichlorophosphor-
ane 2 gives the same species in 59% isolated yield, which we
assign as dihydridophosphorane 3 (Scheme 1).27,28 The

magnitude and multiplicity of the 31P NMR resonance are
indicative of 1JPH coupling of the phosphorus center with bound
hydrogen nuclei of an apparently equivalent pair (i.e., a −P(H)2
unit, vide infra) and longer range 3JPH coupling to the remote
vinylic hydrogen nuclei. The complementary coupling securing
these assignments is evident in the 1H NMR spectrum (Figure
2, top); phosphorus-coupled doublets are observed at δ 7.95
ppm (1JPH = 670 Hz) and δ 5.83 ppm (3JPH = 34 Hz).
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of excess azobenzene follows pseudo-first order kinetics, and an
Eyring analysis over the temperature range 30−60 °C furnishes
ΔH⧧ = 12.4 ± 0.7 kcal/mol and ΔS⧧ = −36 ± 7 eu (see
Supporting Information (SI)). Although a more detailed
mechanistic description awaits further study, the sign and
magnitude of the entropy of activation are consistent with a
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substrate suggested the possibility of employing this
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genation. The direct reaction of azobenzene with a 4-fold excess
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only to minimal conversion (ca. 5%) after 24 h (Table 1, entry
1). However, the addition of 10 mol % of 1 yields
diphenylhydrazine in 80% yield in the same time frame
(entry 2), even under less forcing conditions (40 °C). Longer
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Presumably, under these conditions, three-coordinate 1 accepts
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scheme, the use of a catalytic amount of 3 also promotes
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Figure 3. (Left) Thermal ellipsoid plot (50%) of 3. Hydrogen atoms
on carbon omitted for clarity. Selected bond distances (Å) and angles
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This Work 2: Elementary Reaction of 3 
3とアゾベンゼンの反応 
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The ring systems experience only a minor puckering with
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stoichiometric experiment, exposure of 3 to 1 equiv of

azobenzene in acetonitrile-d3 solution at 40 °C for 19 h results
in 72 ± 5% conversion of 3 to 1 with concomitant formation of
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of excess azobenzene (which mimics catalytic conditions, vide
infra), the conversion of 3 to 1 can be driven cleanly to
completion. When monitored by NMR, no other intermediates
or products are evident in this hydrogen transfer. The
consumption of 3 in acetonitrile-d3 solution in the presence
of excess azobenzene follows pseudo-first order kinetics, and an
Eyring analysis over the temperature range 30−60 °C furnishes
ΔH⧧ = 12.4 ± 0.7 kcal/mol and ΔS⧧ = −36 ± 7 eu (see
Supporting Information (SI)). Although a more detailed
mechanistic description awaits further study, the sign and
magnitude of the entropy of activation are consistent with a
rate-limiting step involving a transition structure from
bimolecular reaction.
The combined reactivities of 1 as hydrogen acceptor from

ammonia-borane and 3 as hydrogen donor to an organic
substrate suggested the possibility of employing this
phosphorus platform as a redox catalyst for transfer hydro-
genation. The direct reaction of azobenzene with a 4-fold excess
of ammonia-borane in acetonitrile solution at 80 °C proceeds
only to minimal conversion (ca. 5%) after 24 h (Table 1, entry
1). However, the addition of 10 mol % of 1 yields
diphenylhydrazine in 80% yield in the same time frame
(entry 2), even under less forcing conditions (40 °C). Longer
reactions times lead to modestly increased yields (entry 3).
Presumably, under these conditions, three-coordinate 1 accepts
hydrogen from ammonia-borane forming dihydridophosphor-
ane 3, then subsequent hydrogen transfer to azobenzene
regenerates 1 and closes the catalytic cycle. Consistent with this
scheme, the use of a catalytic amount of 3 also promotes

Figure 2. (Top) Abridged 1H NMR spectrum for 3 in CDCl3. An
additional 1H signal for −C(CH3)3 is found at δ 1.06 ppm. (Bottom)
Annotated 31P NMR spectrum for 3 in CDCl3. Units are ppm relative
to Me4Si (
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Figure 3. (Left) Thermal ellipsoid plot (50%) of 3. Hydrogen atoms
on carbon omitted for clarity. Selected bond distances (Å) and angles
(deg): P(1)−N(1) = 1.676(2); P(1)−O(1) = 1.721(1); P(1)−O(2) =
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This Work 3: Catalytic Hydrogen Transfer by Using 3 

transfer hydrogenation (entries 4 and 5). Interrogation of the
phosphorus speciation by 31P NMR under the catalytic
conditions supports this mechanistic outline; the signal
corresponding to 1 (δ 186.7 ppm) is replaced by
dihydridophosphorane 3 (δ −43.7 ppm) at early time points,
after which compound 3 persists in solution as the sole
observable phosphorus species in the range +250 to −150 ppm
until the catalytic reaction is terminated at 48 h (Figure 4).

These results implicate 3 as the resting state of the catalytic
cycle. The redox platform 1/3 is unique among phosphorus
species surveyed in enabling this catalytic transfer hydro-
genation reactivity; none of the other trivalent phosphorus
compounds examined promote the transfer hydrogenation at a
comparable level, even at higher loadings and temperatures
(entries 4−6).

These results demonstrate the capacity for a three-coordinate
phosphorus compound to support two electron redox
chemistry of the type commonly observed in the transition
metals. This constitutes a rare example of two-electron bond
modifying redox catalysis outside of the d-block. Moreover,
whereas phosphines are well-known nucleophilic32 and
frustrated Lewis pair (FLP) catalysts,33 the behavior of the
phosphorus center described above is of a different type. In
both nucleophilic and FLP paradigms, the phosphorus behaves
exclusively as an electron donor.34 By contrast, catalysis with 1
results from cycling between discrete tricoordinate PIII and
pentacoordinate PV states, capitalizing on the colocalization of
electron-donating and electron-accepting function at a single
atomic center. It is precisely this coordinative and oxidative
reactivity that enables the valuable two-electron redox trans-
formations observed in transition metal catalysis. The
identification of this reactivity in 1 suggests broader potential
for this nonmetal platform to support additional bond-
modifying redox catalysis of the type currently dominated by
transition metal catalysts. Research along these lines is currently
underway in our laboratory.
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Table 1. Catalytic Transfer Hydrogenation with 1/3

aLoading relative to azobenzene substrate. bDetermined by1H NMR
of crude reaction mixtures. Error estimate ±5%.

Figure 4. Evolution of phosphorus species during transfer hydro-
genation catalysis with 1 (Table 1, entry 3). Time-stacked 31P NMR
spectra at t = 0, 3, 8, and 48 h. See SI for full, unabridged spectra.
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反応溶液の31P NMR追跡 



Other Experiments and Next Approach 
他の実験により何かわかるか？ 

次週の宿題 

次のアプローチはどうすべきか？　→　そのために何を調べてみる？ 

一つの解答：同じ筆者らの続編(N-H結合切断への展開) 
McCarthy, S. M.; Lin, Y.-C.; Devarajan, D.; Chang, J. W.; 
Yennawar, H. P.; Rioux, R. M.; Ess, D. H.; Radosevich, A. T. 
J. Am. Chem. Soc. 2014, 136, 4640-4650. 
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